-
-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathonnx-go-by-an-ex-ops.slide
411 lines (236 loc) · 11.4 KB
/
onnx-go-by-an-ex-ops.slide
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
ONNX-Go
Neural network made easy
00:00 14 May 2019
Olivier Wulveryck
Gopher
olivier.wulveryck@gmail.com
https://github.com/owulveryck/onnx-go
@owulveryck
* Agenda
- *Part* *I* - _WHY_
- Darwinism: from Sysadmin to "ML Ops"
- A better way to get value from Machine Learning?
- *Part* *II* - _HOW_
- Lessons learned from operating systems and developing in Go
- Understanding what's under the hood
- *Part* *III* - _WHAT_
- Think different: a neural net is a Software
- ONNX is a binary representation of this Software
- Go can be a runtime
- ONNX-GO!
- `Code` , Demos, FUN!
* Part I - WHY
.background assets/why.png
* Darwinism: the (natural) evolution of a system engineer
.background assets/darwin.png
- System engineer: The kernel Whisperer
- System administrator: The `/etc` Whisperer
- System integrator: The `application` `server` Whisperer
- DevOps: The `Jenkins` Whisperer
- SRE: The `gopher and snake` Whisperer
: Je suis un (ex) ingénieur systèmes.
: L'ingénierie système est passé de la phase: "gestion de l'OS" à une phase d'intégration de logiciels
: En effet, la maitrise du socle OS permettait de gérer au mieux la plomberie entre l'application et l'environnement d'execution
: Le SRE automatise les choses, le SRE a un role a jouer dans la conception du logiciel (SLO, cf talk)
* The future: ML-Ops?
.background assets/lamp.png
: Parler de python, Bigdata Keras, Tensorflow
: replacer ça dans le contexte de l'intégration systèmes... il faut comprendre le liant
: c'est complexe
.image assets/ml-trends.png
.caption _Machine Learning_ by [[https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=machine%20learning][Google Trends]]
*
.background assets/there_is-a-better_way.png
: There is a better way...
: Le DevOps a montré l'importance de faire communiquer les Dev et les Ops entre eux
: Si les Ops s'intéressent à l'intégration des algorithmes de machine learning, il vont apporter
: leur expérience sur la gestion de la fiabilité et de l'exploitation à l'echelle
: C'est pour cette envie et cette passion qui animent les "travaux" que je vais vous présenter aujourd'hui..
* Part II - HOW
.background assets/idea.png
* What did I learn by managing operations?
- Managing environments is hard and value-less;
- 90% of the costs of software are related to its maintenance [Floris and Harald, 2010];
- Running a software at scale is not only a hosting concern, but has an impact on the developement;
- Think about operations and *reliability* in the early stage of the developement.
* What did Go taugh me?
_Caution_ personal opinion here!
- static binaries make deployement easier;
- stronly typed language and the compiler are your friends;
- A little copying is better than a big dependency
- the language is highly opinionated in a way that allows developers to stay focus instead of constantly refactoring.
- a Go program do not increase the toil when running at scale. Its self-contained static binary is one of the most DevOps friendly principles so far.
* Rise of the machines
.background assets/egg.png
Let's apply those lessons to machine learning based softwares to run it in production, at scale...
: Appying those lessons to machine learning and run it at scale (well in production is a first step)
* What's under the hood.
.background assets/tools.png
* A brief resumé of Neural Networks
* Input of a neural network - a picture example
.play -edit utils/draw.go /func main/,/^}/
* Expected 0utput
[0, 0, 0, 0, 0, 0, 0, 1, 0]
* How to transform the input into an output?
By applying mathematical operators to the input \(X\)
$$f(X) = Y$$
* Neural networks' typical expressions
A typical layer:
$$f(X) = \sigma(W \cdot X+b)$$
This equation is what we call a *model*
\(W\) and \(B\) are the _learnable_ parameters.
The goal of a machine learning algorithm is to find _by_ _itself_ the correct values of \(W\) and \(B\) to make the equation \(f(X) = Y\) true for several *known* *values* of \(X\) and \(Y\).
- \(\cdot\) and \(+\) are linear transformation and
- \(\sigma\) is a non-linear transformation
* Equations are graphs
Let's transform this equation:
$$f(X) = \sigma(W \cdot X+b)$$
into something mode "functional":
$$f(X) = \sigma(add(mul(W,X),B))$$
* Equations are graphs
This equation can easily be represented into a graph:
.image assets/graph1.png
And depending on the phase (testing or training), it is evaluated in a way or the other.
* Conlusion about neural network
Neural networks are *Graphs* and *values*. The values are multidimentional arrays called _tensors_.
* How do you "code" neural networks?
To use a neural network, you need to encode the graph into a language...
- Caffe
- Pytorch
- Keras
- ...
and to use a backend to compute it.
- Tensorflow
- Theano
- CNTK
- ...
* But, do you really want to waste your time in the installation of...
.background assets/squelette.png
.image assets/TensorFlowLogo.svg
* anything and in Go?
*
.background assets/Gorgonia_Final.png
* Part III - WHAT
.background assets/loupe.png
* Think different: a neural net is a
.image assets/software.png
* What we want from a good software:
- *Interoperability*
Facilitate the usage of a pre-trained model. Run on any platform
- *Efficiency/Quality*
Optimize the time-to-market; from the model conception to the model runtime.
Allow the (Go) developer to use and test the neural network quickly, with the tool they already know.
- *Reliability*
Master the environment to lower the probability of failure
* About ONNX
*
.background assets/slide8-fs8.png
* ONNX briefly
A representation of a computation graph in protocol buffers.
It is therefore independent of the tools used (Tensorflow, Keras, PyTorch, tvm...).
You need to write an Encoder/Decoder in order to read the binary files and create a structure for the targeted tools.
* ONNX
So ONNX have _DSL_ that describes a neural network in term of a computation graph.
It also describes the mathematical operators and their expected behavior.
An ONNX interpreter should understand the DSL and implement the behavior of the operators.
* Model zoo
The ONNX Model Zoo is a collection of pre-trained models for state-of-the-art models in deep learning.
There are available in the ONNX format.
.link https://github.com/onnx/models
* About onnx-go
* What is it exactly?
A package that unmarshal a binary representation of a graph into a Go structure
It allows to read the binary file (encoded by another framework/language) and recreates a Graph in a Go structure.
* onnx-go's target
* Vision statement
.code ../../README.md /For the Go/,/\./
*
.background assets/slide9-fs8.png
* onnx-go's interface
* The Model
.link https://godoc.org/github.com/owulveryck/onnx-go
The "entrypoint" of onnx-go is the `Model`;
It's the receiver of the computation graph (the neural network).
.code ../../decoder.go /type Model/,/}/
* Model creation
The model is a "wrapper" around an actual graph receiver that should implement the gonum's Graph
interface. This structure is itself an interface called `Backend`.
To create the Model, you need to assign it a `Backend`.
.code ../../decoder.go /func NewModel/,/{/
.link https://godoc.org/gonum.org/v1/gonum/graph
* onnx-go decoding
The `Model` is compatible with the interface encoding.BinaryUnmarshaler of Go's std library:
.code ../../decoder.go /func.*UnmarshalBinary/,/{/
So to decode a `model.onnx` file, you simply need to create a Model and call this method.
* Input and output of the Graph
Once the graph has been decoded, you need to set input and get output.
onnx-go provides those convenient methods to do that:
.code ../../io.go /.*SetInput/,/{/
.code ../../io.go /.*GetOutput/,/{/
* onnx-go's backend mechanism
* Backend of the graph: do not reinvent the wheel
onnx-go does not handle low-level operations such as tensor products,
convolutions and so on itself.
Instead, it relies on a specialized, well optimized tensor manipulation library to do so,
serving as the "backend engine" of onnx-go.
Rather than picking one single tensor library
and making the implementation of onnx-go tied to that library,
onnx-go handles the problem in a modular way,
and several different backend engines can be plugged seamlessly into onnx-go.
.link https://keras.io/backend/ This is a copy/paste of the Keras documentation with a s/keras/onnx-go/.
* The backend is simply an interface
.code ../../backend.go /type Backend/,/}/
.code ../../backend.go /type OperationCarrier/,/}/
This gives the capacity to use different execution engines (Tensorflow, Gorgonia,...)
*
.background assets/Gorgonia_Final.png
Gorgonia is "compatible" with onnx-go expected backend through the `gorgonnx` package.
.code ../../backend/x/gorgonnx/graph.go /package/,/$/
.code ../../backend/x/gorgonnx/graph.go /type Graph/,/}/
.code ../../backend/x/gorgonnx/graph.go /func/,/}/
*
.background assets/slide10-fs8.png
* Tests and coverage
A package `testbackend` is also part of the `onnx-go` project;
it allows to test a backend against the functional tests of the onnx-project.
A package `testbackend` is also part of the `onnx-go` project;
it allows to test a backend against the functional tests of the onnx-project.
.code ../../backend/x/gorgonnx/onnx_test.go /package/,/\)/
* The CODE!
* Example
* Init the model
- First, you choose and instanciate a backend;
- Then you instanciate the onnx-go top structure and associate it the backend
- And then you can unmarshal your `model.onnx` file into the backend:
.code -numbers onnx-demo.go /START_MODEL OMIT/,/END_MODEL OMIT/
*Note* this reads the model but does not execute it
* Evaluation phase
.code -numbers process.go /START_PROCESS OMIT/,/END_PROCESS OMIT/
* Demo time
.background assets/demo-time-fs8.png
* MNIST
This model predicts handwritten digits using a convolutional neural network (CNN).
*Dataset*
The model has been trained on the popular MNIST dataset.
*Source*
The model is trained in CNTK following the tutorial CNTK 103D: Convolutional Neural Network with MNIST. Note that the specific architecture used is the model with alternating convolution and max pooling layers (found under the "Solution" section at the end of the tutorial).
.link https://github.com/onnx/models/tree/master/vision/classification/mnist model from the zoo
* MNIST
.background assets/demo-fs8.png
.html demos/htdocs/mnist/index.html
* Emotion fer+
The FER+ annotations provide a set of new labels for the standard Emotion FER dataset.
In FER+, each image has been labeled by 10 crowd-sourced taggers, which provide better quality ground truth for still image emotion than the original FER labels.
Having 10 taggers for each image enables researchers to estimate an emotion probability distribution per face. This allows constructing algorithms that produce statistical distributions or multi-label outputs instead of the conventional single-label output.
.link https://arxiv.org/abs/1608.01041
.link https://github.com/onnx/models/tree/master/vision/body_analysis/emotion_ferplus
.image https://raw.githubusercontent.com/Microsoft/FERPlus/master/FER+vsFER.png
* Emotion fer+
.background assets/demo-fs8.png
.html demos/htdocs/emotion/index.html
* Conclusion
- Neural Network can now be used like any other regular library.
- Go's self contained binary makes it easy to run model at scale.
- Let the data-scientist do their job and play with data, and let the developer have fun with it!
> Get involve, nobody is a nobody
> Let's make programming with neural network fun again!