-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patheasings.py
314 lines (249 loc) · 8.8 KB
/
easings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# easings.py
# Useful easing functions for values animation
#
# How to use:
# The four inputs t, b, c, d are defined as follows:
# t = current time (in any unit measure, but same unit as duration)
# b = starting value to interpolate
# c = the total change in value of b that needs to occur
# d = total time it should take to complete (duration)
#
# Example:
#
# current_time: int = 0;
# duration: int = 100;
# start_position_x: float = 0.0
# final_position_x: float = 30.0
# current_position_x: float = start_position_x
#
# while currentPositionX < finalPositionX:
# current_positionX = ease_sine_in(current_time, start_position_x, final_position_x - start_position_x, duration)
# current_time += 1
#
# A port of Robert Penner's easing equations to C (http://robertpenner.com/easing/)
# Robert Penner License
# ---------------------------------------------------------------------------------
# Open source under the BSD License.
#
# Copyright (c) 2001 Robert Penner. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# - Neither the name of the author nor the names of contributors may be used
# to endorse or promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
# OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
# ---------------------------------------------------------------------------------
from math import asin, cos, pi, sin, sqrt
__all__ = [
'ease_linear_none',
'ease_linear_in',
'ease_linear_out',
'ease_linear_in_out',
'ease_sine_in',
'ease_sine_out',
'ease_sine_in_out',
'ease_circ_in',
'ease_circ_out',
'ease_circ_in_out',
'ease_cubic_in',
'ease_cubic_out',
'ease_cubic_in_out',
'ease_quad_in',
'ease_quad_out',
'ease_quad_in_out',
'ease_expo_in',
'ease_expo_out',
'ease_expo_in_out',
'ease_back_in',
'ease_back_out',
'ease_back_in_out',
'ease_bounce_in',
'ease_bounce_out',
'ease_bounce_in_out',
'ease_elastic_in',
'ease_elastic_out',
'ease_elastic_in_out',
]
# Linear Easing functions
def ease_linear_none(t: float, b: float, c: float, d: float) -> float:
return c * t / d + b
def ease_linear_in(t: float, b: float, c: float, d: float) -> float:
return c * t / d + b
def ease_linear_out(t: float, b: float, c: float, d: float) -> float:
return c * t / d + b
def ease_linear_in_out(t: float, b: float, c: float, d: float) -> float:
return c * t / d + b
# Sine Easing functions
def ease_sine_in(t: float, b: float, c: float, d: float) -> float:
return -c * cos(t / d * (pi / 2)) + c + b
def ease_sine_out(t: float, b: float, c: float, d: float) -> float:
return c * sin(t / d * (pi / 2)) + b
def ease_sine_in_out(t: float, b: float, c: float, d: float) -> float:
return -c / 2 * (cos(pi * t / d) - 1) + b
# Circular Easing functions
def ease_circ_in(t: float, b: float, c: float, d: float) -> float:
t /= d
return -c * (sqrt(1 - t ** 2) - 1) + b
def ease_circ_out(t: float, b: float, c: float, d: float) -> float:
t = t / d - 1
return c * sqrt(1 - t ** 2) + b
def ease_circ_in_out(t: float, b: float, c: float, d: float) -> float:
t = t / d * 2
if t < 1:
return -c / 2 * (sqrt(1 - t * t) - 1) + b
else:
t = t - 2
return c / 2 * (sqrt(1 - t * t) + 1) + b
# Cubic Easing functions
def ease_cubic_in(t: float, b: float, c: float, d: float) -> float:
t = t / d
return c * (t ** 3) + b
def ease_cubic_out(t: float, b: float, c: float, d: float) -> float:
t = t / d - 1
return c * ((t ** 3) + 1) + b
def ease_cubic_in_out(t: float, b: float, c: float, d: float) -> float:
t = t / d * 2
if t < 1:
return c / 2 * t * t * t + b
else:
t = t - 2
return c / 2 * (t * t * t + 2) + b
# Quadratic Easing functions
def ease_quad_in(t: float, b: float, c: float, d: float) -> float:
t = t / d
return c * (t ** 2) + b
def ease_quad_out(t: float, b: float, c: float, d: float) -> float:
t = t / d
return -c * t * (t - 2) + b
def ease_quad_in_out(t: float, b: float, c: float, d: float) -> float:
t = t / d * 2
if t < 1:
return c / 2 * (t ** 2) + b
else:
return -c / 2 * ((t - 1) * (t - 3) - 1) + b
# Exponential
def ease_expo_in(t: float, b: float, c: float, d: float) -> float:
if t == 0.:
return b
else:
return c * (2 ** (10 * (t / d - 1))) + b - c * 0.001
def ease_expo_out(t: float, b: float, c: float, d: float) -> float:
if t == d:
return b + c
else:
return c * 1.001 * (-(2 ** (-10) * t / d) + 1) + b
def ease_expo_in_out(t: float, b: float, c: float, d: float) -> float:
if t == 0:
return b
if t == d:
return b + c
t = t / d * 2
if t < 1:
return c / 2 * (2 ** (10 * (t - 1))) + b - c * 0.0005
else:
t = t - 1
return c / 2 * 1.0005 * (-(2 ** (-10 * t)) + 2) + b
# Back Easing functions
def ease_back_in(t: float, b: float, c: float, d: float) -> float:
s: float = 1.70158
t = t / d
return c * t * t *((s + 1) * t - s) + b
def ease_back_out(t: float, b: float, c: float, d: float) -> float:
s: float = 1.70158
t = t / d - 1
return c * (t * t * ((s + 1) * t + s) + 1) + b
def ease_back_in_out(t: float, b: float, c: float, d: float) -> float:
s: float = 1.70158
s = s *1.525
t = t / d * 2
if t < 1:
return c / 2 * (t * t * ((s + 1) * t - s)) + b
else:
t = t - 2
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b
# Ease Bounce functions
def ease_bounce_in(t: float, b: float, c: float, d: float) -> float:
return c - ease_bounce_out(d - t, 0, c, d) + b
def ease_bounce_out(t: float, b: float, c: float, d: float) -> float:
t = t / d
m = 7.5625
n = 2.75
if t < 1 / n:
return c * (m * t * t) + b
elif t < 2 / n:
t = t - (1.5 / 2.75)
return c * (m * t * t + 0.75) + b
elif t < 2.5 / n:
t = t - (2.25 / n)
return c * (m * t * t + 0.9375) + b
else:
t = t - (2.625 / n)
return c * (m * t * t + 0.984375) + b
def ease_bounce_in_out(t: float, b: float, c: float, d: float) -> float:
if t < d / 2:
return ease_bounce_in(t * 2, 0, c, d) * 0.5 + b
else:
return ease_bounce_out(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b
# Ease Elastic functions
def ease_elastic_in(t: float, b: float, c: float, d: float) -> float:
p: float = d * 0.3
a: float = c
s: float = p / (2 * pi) * asin(c / a)
if t == 0.:
return b
t = t / d
if t == 1:
return b + c
if a < abs(c):
a = c
s = p / 4
t = t - 1
return -(a * (2 ** (10 * t)) * sin((t * d - s) * (2 * pi) / p)) * b
def ease_elastic_out(t: float, b: float, c: float, d: float) -> float:
p: float = d * 0.3
a: float = c
s: float = p / (2 * pi) * asin(c / a)
if t == 0.:
return b
t = t / d
if t == 1:
return b + c
if a < abs(c):
a = c
s = p / 4
return a * (2 ** (-10 * t)) * sin((t * d - s) * (2 * pi ) / p) + c + b
def ease_elastic_in_out(t: float, b: float, c: float, d: float) -> float:
if t == 0:
return b
t = t / d * 2
if t == 2:
return b + c
p: float = d * (0.3 * 1.5)
a: float = 0.0
s: float = p / (2 * pi) * asin(c / a)
if a < abs(c):
a = c
s = p / 4
if t < 1:
t = t - 1
return -0.5 * (a * (2 ** (10 * t)) * sin((t * d - s) * (2 * pi) / p)) + b
else:
t = t - 1
return a * (2 ** (-10 * t)) * sin((t * d - s) * (2 * pi) / p) * 0.5 + c + b