-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrange_sum_query_2d_immutable.py
123 lines (95 loc) · 4.19 KB
/
range_sum_query_2d_immutable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
Range Sum Query 2D - Immutable
Given a 2D matrix matrix, handle multiple queries of the following type:
Calculate the sum of the elements of matrix inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Implement the NumMatrix class:
NumMatrix(int[][] matrix) Initializes the object with the integer matrix matrix.
int sumRegion(int row1, int col1, int row2, int col2) Returns the sum of the elements of matrix inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Example 1:
Input
["NumMatrix", "sumRegion", "sumRegion", "sumRegion"]
[[[[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]], [2, 1, 4, 3], [1, 1, 2, 2], [1, 2, 2, 4]]
Output
[null, 8, 11, 12]
Explanation
NumMatrix numMatrix = new NumMatrix([[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (i.e sum of the red rectangle)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (i.e sum of the green rectangle)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (i.e sum of the blue rectangle)
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
At most 104 calls will be made to sumRegion.
https://leetcode.com/problems/range-sum-query-2d-immutable
https://www.notion.so/paulonteri/Object-Oriented-Analysis-and-Design-1a01887a9271475da7b3cd3f4efc9e0d#4925b17f4f7142b88467b45d66602384
"""
class NumMatrix:
"""
Pre-compute the cumulative sums for each row to give O(R) lookup
where R in the number of rows requested
"""
def __init__(self, matrix):
self.row_sums = [
[0 for _ in range(len(matrix[0]))]for _ in range(len(matrix))
]
for row_idx in range(len(matrix)):
running_sum = 0
for col_idx, num in enumerate(matrix[row_idx]):
running_sum += num
self.row_sums[row_idx][col_idx] = running_sum
def sumRegion(self, row1: int, col1: int, row2: int, col2: int):
total = 0
for row_idx in range(row1, row2+1):
total += self._get_row_sum(self.row_sums[row_idx], col1, col2)
return total
def _get_row_sum(self, row, left, right):
left_val = 0
if left > 0:
left_val = row[left-1]
return row[right] - left_val
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)
"""
"""
class NumMatrix2:
"""
Here we use the technique of integral image, which is introduced to speed up block computation.
https://www.notion.so/paulonteri/Object-Oriented-Analysis-and-Design-1a01887a9271475da7b3cd3f4efc9e0d#4925b17f4f7142b88467b45d66602384
"""
def __init__(self, matrix):
# build integral image by recurrence relationship
self.integral_image = [
[0 for _ in range(len(matrix[0]))] for _ in range(len(matrix))
]
for row in range(len(matrix)):
running_sum = 0
for col in range(len(matrix[0])):
running_sum += matrix[row][col]
self.integral_image[row][col] = running_sum
# add top row
if row > 0:
self.integral_image[row][col] += self.integral_image[row-1][col]
def sumRegion(self, row1: int, col1: int, row2: int, col2: int):
bottom_right = self.integral_image[row2][col2]
#
bottom_left = 0
if col1 > 0:
bottom_left = self.integral_image[row2][col1-1]
#
top_right = 0
if row1 > 0:
top_right = self.integral_image[row1-1][col2]
#
top_left = 0
if col1 > 0 and row1 > 0:
top_left = self.integral_image[row1 - 1][col1-1]
# calculate area
return bottom_right - bottom_left - top_right + top_left
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)