-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·162 lines (137 loc) · 5.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
import sys
import argparse
import logging
import torch
from gensim.models import Word2Vec
from composer.conll_corpus import CONLLCorpus
from composer.model import Composer, DependencyEncoding
from composer.data import ComposerCONLLIterableDataset
from composer.utils import configure_logging, find_nps_in_tree, get_conll_file_paths
log = logging.getLogger(__name__)
configure_logging()
def main(corpus_path: str,
train_path: str,
val_path: str,
token_embedding_dim: int,
seq_len: int,
epochs: int,
batch_sz: int,
val_batch_sz: int,
dep_type_ct: int) :
log.info("training embedding model")
corpus = CONLLCorpus(corpus_path)
word_embeddings = Word2Vec(list(corpus.get_texts()),
vector_size = token_embedding_dim,
min_count = 3)
log.info("setting up composer")
composer = Composer(token_embedding_dim,
10,
6000,
dep_type_ct,
token_embedding_dim,
seq_len,
2)
log.debug(f"set up {composer=}")
composer.token_embedding_layer = torch.nn.Embedding.from_pretrained(
torch.HalfTensor(word_embeddings.wv.vectors))
log.debug(f"replaced embedding layer; {composer=}")
log.info(f"model has {sum(p.numel() for p in composer.parameters())} params")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
composer.to(device)
composer.token_embedding_layer.to(device)
log.info(f"moved model to {device}")
loss_fn = torch.nn.CosineEmbeddingLoss()
optimizer = torch.optim.Adam(composer.parameters(), lr = 0.001, eps = 1e-05)
log.info("loading composer training data")
dataset = ComposerCONLLIterableDataset(get_conll_file_paths(train_path),
word_embeddings.wv.get_index,
word_embeddings.wv.has_index_for,
composer.pad_inputs)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size = batch_sz)
dataset_val = ComposerCONLLIterableDataset(get_conll_file_paths(val_path),
word_embeddings.wv.get_index,
word_embeddings.wv.has_index_for,
composer.pad_inputs)
dataloader_val = torch.utils.data.DataLoader(dataset_val,
batch_size = batch_sz)
log.info(f"starting training run, {epochs=}")
for epoch_no in range(epochs) :
loss_total = 0
batch_ct = 0
iterator_val = iter(dataloader_val)
for batch_no, batch in enumerate(dataloader) :
input_ids, dep_ids, head_idcs, label_ids = batch
label_ids = label_ids.squeeze(1)
input_ids = input_ids.to(device)
dep_ids = dep_ids.to(device)
head_idcs = head_idcs.to(device)
label_ids = label_ids.to(device)
deps = DependencyEncoding(dep_ids, head_idcs)
targets = composer.token_embedding_layer(label_ids)
preds = composer(input_ids, deps)
preds = torch.sum(preds, dim = 1)
loss = loss_fn(preds, targets, torch.ones(batch_sz, device = device))
loss.backward()
optimizer.step()
loss_total += loss.item()
if not batch_no % 20 :
batch_val = next(iterator_val, None)
if not batch_val :
iterator_val = iter(dataloader_val)
batch_val = next(iterator_val)
input_ids, dep_ids, head_idcs, label_ids = batch_val
label_ids = label_ids.squeeze(1)
input_ids = input_ids.to(device)
dep_ids = dep_ids.to(device)
head_idcs = head_idcs.to(device)
label_ids = label_ids.to(device)
deps = DependencyEncoding(dep_ids, head_idcs)
targets = composer.token_embedding_layer(label_ids)
preds = composer(input_ids, deps)
preds = torch.sum(preds, dim = 1)
loss_val = loss_fn(preds, targets, torch.ones(batch_sz, device = device)).item()
loss_avg = loss_total / min(batch_no + 1, 20)
log.info(f"{epoch_no=}\t{batch_no=}\t{loss_avg=}\t{loss_val=}")
loss_total = 0
batch_ct = batch_no
loss_avg = loss_total / ((batch_ct % 20) + 1)
log.info(f"{epoch_no=} final {loss_avg=}")
if __name__ == "__main__" :
parser = argparse.ArgumentParser()
parser.add_argument("--corpus-path",
help = "path to directory with CONLL files for embedding training",
required = True)
parser.add_argument("--train-path",
help = "path to directory with a list of phrases to approximate",
required = True)
parser.add_argument("--val-path",
help = "path to directory with a list of phrases to validate on",
required = True)
parser.add_argument("--epochs",
help = "number of epochs of training to run",
type = int,
default = 1)
parser.add_argument("--batch-sz",
help = "batch size to use in training",
type = int,
default = 5)
parser.add_argument("--val-batch-sz",
help = "batch size to use for validation",
type = int,
default = 20)
parser.add_argument("--token-embedding-dim",
help = "embedding dimensionality for tokens and output",
type = int,
default = 300)
parser.add_argument("--dep-type-ct",
help = "number of dependency types for which to train transforms",
type = int,
default = 52)
parser.add_argument("--seq-len",
help = "maximum input sequence length",
type = int,
default = 6)
args = parser.parse_args(sys.argv[1:])
main(**vars(args))