-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
53 lines (44 loc) · 1.85 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import unittest
import logging
import torch
from composer.model import *
from composer.utils import configure_logging
log = logging.getLogger(__name__)
configure_logging()
class UtilityTest(unittest.TestCase) :
def test_generate_mask_happy_path(self) :
heads = torch.LongTensor([[1, 0, 1, 2]])
embedding_dim = 5
mask = generate_mask(heads, embedding_dim)
expected = torch.BoolTensor(
[[[[False, False, False, False, False],
[ True, True, True, True, True],
[False, False, False, False, False],
[False, False, False, False, False]],
[[ True, True, True, True, True],
[False, False, False, False, False],
[ True, True, True, True, True],
[False, False, False, False, False]],
[[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[ True, True, True, True, True]],
[[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False]]]])
assert torch.equal(mask, expected)
def test_generate_mask_empty_heads(self) :
pass
class CompositionBlockTest(unittest.TestCase) :
def test_get_device(self) :
if torch.cuda.is_available() :
composition_block = CompositionBlock()
composition_block.to("cpu")
assert composition_block.device() == torch.device("cpu")
composition_block.to("cuda:0")
assert composition_block.device() == torch.device("cuda:0")
else :
log.warn("CUDA is not available; can't test moving model between devices")
class Composer(unittest.TestCase) :
pass