-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathbenchmark_layer.py
142 lines (122 loc) · 4.38 KB
/
benchmark_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
from typing import Callable, Dict, Tuple
import torch
import torch.utils.benchmark as benchmark
from benchmarks.layers import LayerFactory, LayerType
from benchmarks.utils import get_layer_set, reset_peak_memory_stats
def run_layer_benchmark(
num_repeats: int,
forward_only: bool = False,
gsm_mode: str = "baseline",
create_layer: Callable = LayerFactory.create,
**kwargs,
) -> Tuple[float, Dict[str, int]]:
"""Benchmarks a single layer for runtime and CUDA memory (if applicable).
Args:
num_repeats: how many times to repeat the forward(/backward) pass
forward_only: whether to skip the backward pass
create_layer: function for creating the layer, takes **kwargs
Returns: a tuple consisting of
Runtime as a float, and
Memory statistics as a dict
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
invalid_mem_flag = False
if torch.cuda.is_available():
mem = reset_peak_memory_stats(device)
if mem is None:
invalid_mem_flag = True
else:
invalid_mem_flag |= not (mem.cur_mem == 0)
# setup layer
layer_fun = create_layer(gsm_mode=gsm_mode, **kwargs)
if forward_only:
layer_fun.module.eval()
benchmark_fun = layer_fun.forward_only
else:
layer_fun.module.train()
benchmark_fun = layer_fun.forward_backward
# move layer to device and get memory statistics
memory_stats = layer_fun.to(device=device)
invalid_mem_flag |= not (
sum(v for _, v in memory_stats.items()) == torch.cuda.memory_allocated(device)
)
# benchmark.Timer performs its own warmups
timer = benchmark.Timer(
stmt="benchmark_fun()",
globals={"benchmark_fun": benchmark_fun},
num_threads=1,
)
runtime = timer.timeit(num_repeats).mean
# get max memory allocated and reset memory statistics
mem = reset_peak_memory_stats(device)
if mem is None:
invalid_mem_flag = True
else:
memory_stats["max_memory"] = mem.prev_max_mem
if invalid_mem_flag:
return runtime, None
else:
return runtime, memory_stats
def main(args) -> None:
with open(args.config_file) as config_file:
config = json.load(config_file)
runtime, memory_stats = run_layer_benchmark(
num_repeats=args.num_repeats,
forward_only=args.forward_only,
layer_name=args.layer,
batch_size=args.batch_size,
random_seed=args.random_seed,
gsm_mode=args.gsm_mode,
**config[get_layer_set(args.layer)],
)
print(f"Runtime (seconds): {runtime}")
print(f"Memory statistics (bytes): {memory_stats}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"layer",
type=str,
choices=[v for k, v in LayerType.__dict__.items() if not k.startswith("__")],
)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument(
"--num_repeats",
default=20,
type=int,
help="number of forward/backward passes to run",
)
parser.add_argument(
"--forward_only", action="store_true", help="only run forward passes"
)
parser.add_argument("--random_seed", default=0, type=int)
parser.add_argument(
"-c",
"--config_file",
default="config.json",
type=str,
help="path to config file with settings for each layer",
)
parser.add_argument(
"gsm_mode",
type=str,
choices=["baseline", "hooks", "ew", "functorch"],
default="baseline",
help="Mode to compute per sample gradinets: Non-private(baseline), Classic (hooks), Functorch(functorch), ExpandedWeights(ew)",
)
args = parser.parse_args()
main(args)