-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest_tools_plotting.py
225 lines (168 loc) · 6.52 KB
/
test_tools_plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import pytest
MATPLOTLIB_NOT_AVAIL = False
try:
import matplotlib.pyplot
except ImportError:
MATPLOTLIB_NOT_AVAIL = True
PIL_NOT_AVAIL = False
try:
import PIL
except ImportError:
PIL_NOT_AVAIL = True
DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
TOOLS_DATA_DIR = os.path.join(DATA_DIR, "tools")
def test_get_gdal_raster_mpl_imshow_basic():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(input_img, bands=None, bbox=None)
def test_get_gdal_raster_mpl_imshow_bands():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber.kea")
rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[8, 9, 3], bbox=None
)
def test_get_gdal_raster_mpl_imshow_bands_bbox():
import rsgislib.tools.plotting
import rsgislib.imageutils
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber.kea")
sub_bbox = rsgislib.imageutils.get_img_bbox(input_img)
rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[8, 9, 3], bbox=sub_bbox
)
def test_linear_stretch_np_arr_3_bands():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1, 2, 3], bbox=None
)
rsgislib.tools.plotting.linear_stretch_np_arr(img_data, no_data_val=0.0)
def test_linear_stretch_np_arr_1_band():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1], bbox=None
)
rsgislib.tools.plotting.linear_stretch_np_arr(img_data, no_data_val=0.0)
def test_cumulative_stretch_np_arr_3_bands():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1, 2, 3], bbox=None
)
rsgislib.tools.plotting.cumulative_stretch_np_arr(img_data, no_data_val=0.0)
def test_cumulative_stretch_np_arr_1_band():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1], bbox=None
)
rsgislib.tools.plotting.cumulative_stretch_np_arr(img_data, no_data_val=0.0)
def test_stdev_stretch_np_arr_3_bands():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1, 2, 3], bbox=None
)
rsgislib.tools.plotting.stdev_stretch_np_arr(img_data, no_data_val=0.0)
def test_stdev_stretch_np_arr_1_band():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1], bbox=None
)
rsgislib.tools.plotting.stdev_stretch_np_arr(img_data, no_data_val=0.0)
def test_manual_stretch_np_arr_3_bands():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1, 2, 3], bbox=None
)
min_max_vals = list()
min_max_vals.append({"min": 10, "max": 400})
min_max_vals.append({"min": 22, "max": 300})
min_max_vals.append({"min": 1, "max": 120})
rsgislib.tools.plotting.manual_stretch_np_arr(
img_data, min_max_vals, no_data_val=0.0
)
def test_manual_stretch_np_arr_1_band():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_subset_b123.kea")
img_data, img_coords = rsgislib.tools.plotting.get_gdal_raster_mpl_imshow(
input_img, bands=[1], bbox=None
)
min_max_vals = {"min": 10, "max": 400}
rsgislib.tools.plotting.manual_stretch_np_arr(
img_data, min_max_vals, no_data_val=0.0
)
def test_get_gdal_thematic_raster_mpl_imshow_basic():
import rsgislib.tools.plotting
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_cls.kea")
rsgislib.tools.plotting.get_gdal_thematic_raster_mpl_imshow(input_img)
def test_get_gdal_thematic_raster_mpl_imshow_bbox():
import rsgislib.tools.plotting
import rsgislib.imageutils
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_cls.kea")
sub_bbox = rsgislib.imageutils.get_img_bbox(input_img)
rsgislib.tools.plotting.get_gdal_thematic_raster_mpl_imshow(
input_img, bbox=sub_bbox
)
@pytest.mark.skipif(MATPLOTLIB_NOT_AVAIL, reason="matplotlib dependency not available")
def test_get_gdal_thematic_raster_mpl_imshow_patches():
import rsgislib.tools.plotting
cls_names_lut = dict()
cls_names_lut[1] = "Forest"
cls_names_lut[2] = "Grass"
cls_names_lut[3] = "Urban"
cls_names_lut[4] = "Water"
input_img = os.path.join(DATA_DIR, "sen2_20210527_aber_cls.kea")
rsgislib.tools.plotting.get_gdal_thematic_raster_mpl_imshow(
input_img, out_patches=True, cls_names_lut=cls_names_lut
)
@pytest.mark.skipif(PIL_NOT_AVAIL, reason="PIL dependency not available")
def test_create_legend_img_file(tmp_path):
import rsgislib.tools.plotting
years = [
"1996",
"2007",
"2008",
"2009",
"2010",
"2015",
"2016",
"2017",
"2018",
"2019",
"2020",
]
lyr_clrs = [
"#FFCD00",
"#FF7700",
"#FF0000",
"#FF00E6",
"#C400FF",
"#5E00FF",
"#001AFF",
"#0080FF",
"#00CDFF",
"#00FF91",
"#00FF22",
]
legend_info_dict = dict()
for year, clr in zip(years, lyr_clrs):
legend_info_dict[year] = clr
out_file = os.path.join(tmp_path, "gmw_loss_legend.png")
font_file = os.path.join(TOOLS_DATA_DIR, "Palatino Font.ttf")
rsgislib.tools.plotting.create_legend_img_file(
legend_info_dict,
out_img_file=out_file,
n_cols=4,
box_size=(60, 40),
font=font_file,
font_size=24,
char_width=12,
title_str="Loss",
title_height=32,
margin=5,
)
assert os.path.exists(out_file)