-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
158 lines (133 loc) · 6.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import sys
import torch
import torch.autograd as autograd
import torch.nn.functional as F
import numpy as np
from sklearn.metrics import f1_score
from torch.autograd import Variable
import warnings
warnings.filterwarnings('always')
def _generate_batch(data, batch_size=200, no_shuffles=2):
# generate a batch on data = dataset[train_data], dataset[test_data],...
size = len(data['arg1'])
# shuffle at first
for i in range(no_shuffles):
for cur in range(size):
target = np.random.randint(cur, size)
if target != cur:
for k in data:
tmp = data[k][target].copy()
data[k][target] = data[k][cur]
data[k][cur] = tmp
nb_batch = (size + batch_size - 1) // batch_size
for index in range(nb_batch):
begin, end = index * batch_size, min((index + 1) * batch_size, size)
cur_data = {}
for k in data:
# k is arg1, arg2, argplus, sense ...
cur_data[k] = data[k][begin:end]
yield (cur_data)
def _prepare_inputs(data_batched):
'''Inputs for the model'''
inputs = []
inputs.append(data_batched['arg1'])
inputs.append(data_batched['pos1'])
inputs.append(data_batched['arg2'])
inputs.append(data_batched['pos2'])
return [inputs[0], inputs[1], inputs[2], inputs[3]]
def train(train_data, test_data, batch_size, model, args):
if args.cuda:
model.cuda()
print(model.parameters)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,model.parameters()), lr=args.lr)
steps = 0
best_acc = 0
last_step = 0
model.train()
for epoch in range(1, args.epochs+1):
for batch in _generate_batch(train_data, batch_size):
# get inputs for training
arg1, pos1, arg2, pos2 = _prepare_inputs(batch)
# transform target into 1D tensor
target = np.array([np.nonzero(x)[0] for x in batch['sense']])
target = torch.from_numpy(target).type(torch.LongTensor).squeeze(1)
# transform data to tensors
arg1, pos1, arg2, pos2 = torch.from_numpy(arg1).type(torch.LongTensor), torch.from_numpy(pos1).type(torch.LongTensor), \
torch.from_numpy(arg2).type(torch.LongTensor), torch.from_numpy(pos2).type(torch.LongTensor)
if args.cuda:
target = target.cuda()
arg1, pos1, arg2, pos2 = arg1.cuda(), pos1.cuda(), arg2.cuda(), pos2.cuda()
optimizer.zero_grad()
if args.pos:
logit = model(arg1, pos1, arg2, pos2)
else:
logit = model(arg1, arg2)
loss = F.cross_entropy(logit, target)
loss.backward()
optimizer.step()
steps += 1
if steps % args.log_interval == 0:
# calculate accuracy
corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
accuracy = 100.0 * corrects/batch_size
# calculate fscore
if args.cuda:
logits = torch.max(logit, 1)[1].cpu()
target = target.cpu()
fscore = f1_score(target.numpy(), logits.numpy(), average='macro')
else:
logits = torch.max(logit, 1)[1].numpy()
fscore = f1_score(target.numpy(), logits, average='macro')
# write results
sys.stdout.write(
'\rBatch[{}] - loss: {:.6f} - fscore: {:.3f} - acc: {:.2f}% ({}/{})'.format(steps, loss.item(), fscore,
accuracy, corrects, batch_size))
if steps % args.test_interval == 0:
fscore = eval(test_data, model, args)
if fscore > best_acc:
best_acc = fscore
last_step = steps
if args.save_best:
save(model, args.save_dir, 'best', steps)
else:
if steps - last_step >= args.early_stop:
print('early stop by {} steps.'.format(args.early_stop))
elif steps % args.save_interval == 0:
save(model, args.save_dir, 'snapshot', steps)
def eval(test_data, model, args):
model.eval()
# get inputs for training
arg1, pos1, arg2, pos2 = _prepare_inputs(test_data)
# transform target into 1D tensor
target = np.array([np.nonzero(x)[0] for x in test_data['sense']])
target = torch.from_numpy(target).type(torch.LongTensor).squeeze(1)
# transform data to tensors
arg1, pos1, arg2, pos2 = torch.from_numpy(arg1).type(torch.LongTensor), \
torch.from_numpy(pos1).type(torch.LongTensor), \
torch.from_numpy(arg2).type(torch.LongTensor), \
torch.from_numpy(pos2).type(torch.LongTensor)
if args.cuda:
target = target.cuda()
arg1, pos1, arg2, pos2 = arg1.cuda(), pos1.cuda(), arg2.cuda(), pos2.cuda()
if args.pos:
logit = model(arg1, pos1, arg2, pos2)
else:
logit = model(arg1, arg2)
loss = F.cross_entropy(logit, target, size_average=False)
# calculate fscore
if args.cuda:
logits = torch.max(logit, 1)[1].cpu()
target = target.cpu()
fscore = f1_score(target.numpy(), logits.numpy(), average='macro')
else:
logits = torch.max(logit, 1)[1].numpy()
fscore = f1_score(target.numpy(), logits, average='macro')
print('\nEvaluation - loss: {:.6f} - fscore: {:.4f} \n'.format(loss.item(), fscore))
return fscore
def save(model, save_dir, save_prefix, steps):
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_prefix = os.path.join(save_dir, save_prefix)
save_path = '{}_steps_{}.pt'.format(save_prefix, steps)
torch.save(model.state_dict(), save_path)