-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscourse_cnn.py
365 lines (303 loc) · 14.8 KB
/
discourse_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
""" Simple implementation of CNN for discourse """
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]="3"
import numpy as np
from keras.layers import Input, Embedding, Dense, Dropout, Reshape, concatenate, Lambda, \
Activation,Convolution1D, GlobalMaxPooling1D, GlobalAveragePooling1D
import keras.backend as K
from keras.optimizers import Adagrad, SGD, Adam
from keras.utils.generic_utils import Progbar # progress bar
import pickle
from keras.models import Model
class GAN(object):
""" CNN Class """
def __init__(self, arg_maxlen=80, _num_class = 11):
self._num_class = _num_class # num of classes for the classifier
if _num_class == 11:
self.discourse_data_file = "data_f0-r0.5-w36128-p45.pic"
elif _num_class == 4:
self.discourse_data_file = "data_f0-r0.5-w36128-p45-4way.pic"
# get dataset
self.dataset = self.fetch_data()
# conv params
self.arg_maxlen = arg_maxlen
self.filter_lengths = [2, 3, 5]
self.filter_num = 400
self.cnn_dense_size = 300
self.cnn_dense_num = 1 # not a deep network just 1 set of layers
self.cnn_avgpool = False # for average pooling, default is max-pool
# optimizers
self.adagrad = Adagrad(lr=1e-3, clipnorm=1.0)
self.adam = Adam(lr=1e-3, beta_1=0.5, clipnorm=1.0)
self.sgd = SGD(lr=1e-3, clipnorm=1.0)
# for pretrained embedding
self.word_WE = self.dataset['word_WE']
self._embed_word = Embedding(input_dim=self.word_WE.shape[0],input_length=self.arg_maxlen,weights=[self.word_WE],
output_dim=self.word_WE.shape[1],trainable=False,mask_zero=False)
# parameters of pos
self.pos_size = 100
self.max_length = 45
self.pos_dim = 100
self.pos_dense_size = 50
self._embed_pos = Embedding(input_dim=self.pos_size, input_length=self.max_length, output_dim=self.pos_dim,
trainable=True)
# training
#self.epoch = 30
self.batch_size = 200
self.no_shuffles = 0
def fetch_data(self):
"load data from pickle file"
with open(self.discourse_data_file, "rb") as f:
data = pickle.load(f)
for key in data['train_data']:
"Print keys from data, to know content"
print("key: %s " % (key))
return data
# Basic building blocks
def build_cnn_pos(self):
"""Build the first layer of model, from [arg1, arg2(plus)] to [repr] """
''' input '''
pos1_pos_input = Input(shape=(self.arg_maxlen,), dtype='int32', name='pos1_input')
pos2_pos_input = Input(shape=(self.arg_maxlen,), dtype='int32', name='pos2_input')
''' projection '''
pos1_embed = self._embed_pos(pos1_pos_input)
pos2_embed = self._embed_pos(pos2_pos_input)
''' word-level cnn + pooling'''
pos1_cnns = [Convolution1D(filters= self.filter_num, kernel_size=i,
padding='same', activation='tanh')(pos1_embed) for i in self.filter_lengths]
pos2_cnns = [Convolution1D(filters= self.filter_num, kernel_size=i,
padding='same', activation='tanh')(pos2_embed) for i in self.filter_lengths]
if len(pos1_cnns) > 1:
pos1_cnn_merge = concatenate(pos1_cnns, axis=-1)
pos2_cnn_merge = concatenate(pos2_cnns, axis=-1)
else:
pos1_cnn_merge = pos1_cnns
pos2_cnn_merge = pos2_cnns
pooling_part = GlobalMaxPooling1D()
if self.cnn_avgpool:
pooling_part = GlobalAveragePooling1D()
pos1_pos_mp = pooling_part(pos1_cnn_merge)
pos2_pos_mp = pooling_part(pos2_cnn_merge)
''' Output repr '''
merged_vector = concatenate([pos1_pos_mp, pos2_pos_mp], axis=-1)
''' Add another denses ? '''
for i in range(self.cnn_dense_num): # make this number positive
merged_vector = Dropout(0.4)(merged_vector) # no dropout for the output layer
merged_vector = Dense(self.pos_dense_size, activation='tanh')(merged_vector)
input_list = [pos1_pos_input, pos2_pos_input]
model = Model(inputs=input_list, outputs = merged_vector)
#model.summary()
return model
# Basic building blocks
def build_cnn_word(self):
"""Build the cnn model, from [pos1, pos2(plus)] to [repr] """
''' input '''
arg1_word_input = Input(shape=(self.arg_maxlen,), dtype='int32', name='arg1_word')
arg2_word_input = Input(shape=(self.arg_maxlen,), dtype='int32', name='arg2_word')
''' projection '''
arg1_word = self._embed_word(arg1_word_input)
arg2_word = self._embed_word(arg2_word_input)
''' word-level cnn + pooling'''
arg1_cnns = [Convolution1D(filters= self.filter_num, kernel_size=i,
padding='same', activation='tanh')(arg1_word) for i in self.filter_lengths]
arg2_cnns = [Convolution1D(filters= self.filter_num, kernel_size=i,
padding='same', activation='tanh')(arg2_word) for i in self.filter_lengths]
if len(arg1_cnns) > 1:
arg1_cnn_merge = concatenate(arg1_cnns, axis=-1)
arg2_cnn_merge = concatenate(arg2_cnns, axis=-1)
else:
arg1_cnn_merge = arg1_cnns
arg2_cnn_merge = arg2_cnns
pooling_part = GlobalMaxPooling1D()
if self.cnn_avgpool:
pooling_part = GlobalAveragePooling1D()
arg1_word_mp = pooling_part(arg1_cnn_merge)
arg2_word_mp = pooling_part(arg2_cnn_merge)
''' Output repr '''
merged_vector = concatenate([arg1_word_mp, arg2_word_mp], axis=-1)
''' Add dense layers with dropout '''
for i in range(self.cnn_dense_num): # make this number positive
merged_vector = Dropout(0.4)(merged_vector) # no dropout for the output layer
merged_vector = Dense(self.cnn_dense_size, activation='tanh')(merged_vector)
output_vector = merged_vector
input_list = [arg1_word_input, arg2_word_input]
model = Model(inputs=input_list, outputs=output_vector)
model.summary()
return model
# Classifier for [word,pos] - perceptron with 1 layer
def _build_joint_classifier(self, block_cnn_word, block_cnn_pos):
''' For word,pos input reps to obtain classes
'''
block_cnn_word.trainable = True
block_cnn_pos.trainable = True
arg1 = Input(shape=(self.arg_maxlen,), dtype='int32')
arg2 = Input(shape=(self.arg_maxlen,), dtype='int32') #arg2(plus)
pos1 = Input(shape=(self.arg_maxlen,), dtype='int32')
pos2 = Input(shape=(self.arg_maxlen,), dtype='int32') #arg2(plus)
word_reps = block_cnn_word([arg1, arg2]) # cnn network _build_cnn
pos_reps = block_cnn_pos([pos1, pos2]) # cnn network _build_cnn
merged_vector = concatenate([word_reps, pos_reps], axis=-1)
c = Dense(250, activation='tanh')(merged_vector)
c = Dropout(0.4)(c)
predictions = Dense(self._num_class, activation='softmax')(c)
model = Model(inputs=[arg1, arg2, pos1, pos2], outputs=predictions)
model.summary()
model.compile(loss='categorical_crossentropy', optimizer=self.adagrad, metrics=['acc'])
return model
# Classifier for word - perceptron with 1 layer
def _build_word_classifier(self, block_cnn_word):
''' For word or pos reps to obtain classes
'''
block_cnn_word.trainable = True
arg1 = Input(shape=(self.arg_maxlen,), dtype='int32')
arg2 = Input(shape=(self.arg_maxlen,), dtype='int32') #arg2(plus)
word_reps = block_cnn_word([arg1, arg2]) # cnn network _build_cnn
c = Dense(250, activation='tanh')(word_reps)
c = Dropout(0.4)(c)
predictions = Dense(self._num_class, activation='softmax')(c)
model = Model(inputs=[arg1, arg2], outputs=predictions)
model.summary()
model.compile(loss='categorical_crossentropy', optimizer=self.adagrad, metrics=['acc'])
return model
@staticmethod # this method cannot be called outside class
def _generate_batch(data, batch_size, no_shuffles, progbar):
# generate a batch on data = dataset[train_data], dataset[test_data],...
size = len(data['arg1'])
# shuffle at first
for i in range(no_shuffles):
for cur in range(size):
target = np.random.randint(cur, size)
if target != cur:
for k in data:
tmp = data[k][target].copy()
data[k][target] = data[k][cur]
data[k][cur] = tmp
nb_batch = (size+batch_size-1)//batch_size
progress_bar = None
if(progbar):
progress_bar = Progbar(target=nb_batch)
for index in range(nb_batch):
if(progbar):
progress_bar.update(index)
begin, end = index*batch_size, min((index+1)*batch_size, size)
cur_data = {}
for k in data:
# k is arg1, arg2, argplus, sense ...
cur_data[k] = data[k][begin:end]
yield(cur_data)
# get inputs for arg1,arg2(plus) - word
def _prepare_inputs_1(self, data_batched, add_arg2=0):
" Inputs for arg1,arg2(plus)"
inputs = []
inputs.append(data_batched['arg1']) # arg1 is always there
if add_arg2:
inputs.append(data_batched['arg2'])
else:
inputs.append(data_batched['arg2plus'])
return inputs
# get inputs for arg1,arg2(plus) and pos1,pos2(plus)
def _prepare_inputs_2(self, data_batched, add_arg2=0):
" Inputs for arg1,arg2(plus) and pos1,pos2(plus)"
inputs = []
inputs.append(data_batched['arg1'])
if add_arg2:
inputs.append(data_batched['arg2'])
inputs.append(data_batched['pos1'])
inputs.append(data_batched['pos2'])
else:
inputs.append(data_batched['arg2plus'])
inputs.append(data_batched['pos1'])
inputs.append(data_batched['pos2plus'])
return inputs
# plot confusion matrix
def plot_confusion_matrix(self, conf_mat_name, true_classes, pred_classes):
conf_arr = confusion_matrix(true_classes, pred_classes)
print("Confusion Matrix:\n")
print(conf_arr)
norm_conf = []
for i in conf_arr:
a = 0
tmp_arr = []
a = sum(i, 0)
for j in i:
tmp_arr.append(float(j) / float(a))
norm_conf.append(tmp_arr)
fig = plt.figure()
plt.clf()
ax = fig.add_subplot(111)
ax.set_aspect(1)
res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet,
interpolation='nearest')
width, height = conf_arr.shape
for x in range(width):
for y in range(height):
ax.annotate(str(conf_arr[x][y]), xy=(y, x),
horizontalalignment='center',
verticalalignment='center')
cb = fig.colorbar(res)
alphabet = ['0','1','2','3','4','5','6','7','8','9','10' ]
plt.xticks(range(width), alphabet[:width])
plt.yticks(range(height), alphabet[:height])
plt.savefig(conf_mat_name+'.png', format='png')
# get params 4 naming conf matrix
def get_conf_name(self, tval_arg2=True, train_word_only=True):
no_labels = str(self._num_class)
if tval_arg2:
type_ = '-imp-'
else:
type_ = '-aug-'
if train_word_only:
data_select = '-text-'
else:
data_select = '-text-pos-'
return 'cnn_conf_mat-'+no_labels+type_+data_select
def fit(self, model, epochs, tval_arg2=False, train_word_only= True):
# tval_arg2=False means we include arg2plus(pos2plus)
# train_word_only= True fit only cnn_word model
if train_word_only:
for count in range(epochs):
count += 1
print('Epoch: '+str(count)+'\n')
for data in self._generate_batch(self.dataset['train_data'], self.batch_size, self.no_shuffles, True):
model.train_on_batch(self._prepare_inputs_1(data, add_arg2=tval_arg2), [data['sense']])
scores = model.evaluate([self.dataset['test_data']['arg1'], self.dataset['test_data']['arg2plus']],
[self.dataset['test_data']['sense']], batch_size=self.batch_size)
# get classes of test for confusion matrix
pred_probs = model.predict([self.dataset['test_data']['arg1'], self.dataset['test_data']['arg2plus']])
pred_classes = pred_probs.argmax(axis=-1)
true_classes_1hotvecs = self.dataset['test_data']['sense']
true_classes = [[i for i, e in enumerate(vec) if e != 0][0] for vec in true_classes_1hotvecs]
# get confusion matrix and save figure
conf_mat_name = self.get_conf_name(tval_arg2, train_word_only)
self.plot_confusion_matrix(conf_mat_name, true_classes, pred_classes)
print("\n{}\t{}".format(model.metrics_names, scores))
print(scores)
return scores
else:
for count in range(epochs):
count += 1
print('Epoch: '+str(count)+'\n')
for data in self._generate_batch(self.dataset['train_data'], self.batch_size, self.no_shuffles, True):
model.train_on_batch(self._prepare_inputs_2(data, add_arg2=tval_arg2), [data['sense']])
scores = model.evaluate([self.dataset['test_data']['arg1'], self.dataset['test_data']['arg2plus'],
self.dataset['test_data']['pos1'], self.dataset['test_data']['pos2plus']],
[self.dataset['test_data']['sense']], batch_size=self.batch_size)
print("\n{}\t{}".format(model.metrics_names, scores))
print(scores)
return scores
# model for word only
gan1 = GAN(arg_maxlen=80, _num_class = 11)
model = gan1._build_word_classifier(gan1.build_cnn_word())
scores = gan1.fit(model, epochs = 50, tval_arg2=False, train_word_only= True)
# model for word and pos
#gan2 = GAN(arg_maxlen=80)
#model2 = gan2._build_joint_classifier(gan2.build_cnn_word(), gan2.build_cnn_pos())
#scores = gan1.fit(model, epochs = 1, tval_arg2=False, train_word_only= False)