From 9547f22b2121a9db982fbd6da189638b9c903ed1 Mon Sep 17 00:00:00 2001
From: devfernandoa <fefealzueta@gmail.com>
Date: Mon, 21 Oct 2024 13:27:46 -0300
Subject: [PATCH] Adding structural-analysis.py

---
 structural-analysis.py | 225 +++++++++++++++++++++++++++++++++++++++++
 1 file changed, 225 insertions(+)
 create mode 100644 structural-analysis.py

diff --git a/structural-analysis.py b/structural-analysis.py
new file mode 100644
index 00000000..f89e08ab
--- /dev/null
+++ b/structural-analysis.py
@@ -0,0 +1,225 @@
+import numpy as np
+
+# 1. Receive the N nodes, connectivities
+
+n = input('Enter the number of nodes: ')
+connectivities = []
+nodes = []
+loads = []
+
+for i in range(int(n)):
+    x = input(f'Enter the x coordinate of node {i}: ')
+    y = input(f'Enter the y coordinate of node {i}: ')
+    node = [x, y]
+    nodes.append(node)
+    connectivity = input('Enter a list of connectivities for this node separated by commas: ').split(', ')
+    for i in range(len(connectivity)):
+        if connectivity[i].isdigit():
+            connectivity[i] = int(connectivity[i])
+        else:
+            print(f"Error: '{connectivity[i]}' is not a valid integer.")
+            break
+    else:
+        connectivities.append(connectivity)    
+    loadX = int(input(f'Enter the load applied to node {i} in X: '))
+    loadY = int(input(f'Enter the load applied to node {i} in Y: '))
+    load = [loadX, loadY]
+    loads.append(load)
+    print('\n')
+
+area = input('Enter the cross-sectional area: ')
+elasticity = input('Enter the modulus of elasticity: ')
+tension = input('Enter the tensile stress: ')
+rupture = input('Enter the rupture stress: ')
+
+print('\n\n\n')
+
+element_list = []
+element_matrices = {}
+for i in range(len(connectivities)):
+    for j in range(len(connectivities[i])):
+        nodes_pair = sorted([i, int(connectivities[i][j])])
+        if tuple(nodes_pair) not in element_list:
+            print(f'Element {i} connected to node {int(connectivities[i][j])} with incidence in {i} and {int(connectivities[i][j])}')
+            element_list.append(tuple(nodes_pair))
+            node1 = nodes[i]
+            node2 = nodes[int(connectivities[i][j])]
+            x1, y1 = float(node1[0]), float(node1[1])
+            x2, y2 = float(node2[0]), float(node2[1])
+            L = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
+            c = (x2 - x1) / L
+            s = (y2 - y1) / L
+            print(f'\nFor element {i} we have: c = {c} and s = {s}')
+            k = float(area) * float(elasticity) / L
+            element_matrix = (float(elasticity) * float(area))/ L * np.array([[c**2, c*s, -c**2, -c*s], [c*s, s**2, -c*s, -s**2], [-c**2, -c*s, c**2, c*s], [-c*s, -s**2, c*s, s**2]])
+            element_matrices[tuple(nodes_pair)] = element_matrix
+
+# Calculating the degree of freedom numbering
+dof = []
+for i in range(int(n)):
+    dof.append([2*i, 2*i+1])
+    print('Node', i, '->', dof[i])
+
+# Calculating degrees of freedom with restriction
+# Restriction at node 0 (element 0 and 1), and at the last node (element last node * 2i + 1)
+restricted_dof = []
+restricted_dof.append(dof[0][0])
+restricted_dof.append(dof[0][1])
+restricted_dof.append(dof[-1][1])
+print(restricted_dof)
+
+# Degree of freedom of nodes with load
+loads_dict = {}
+for i in range(int(n)):
+    if (loads[i][0] != 0 or loads[i][1] != 0):
+        loads_dict[dof[i][0]] = loads[i][0]
+        loads_dict[dof[i][1]] = loads[i][1]
+        print("For degree of freedom", dof[i][0], "the load is", loads[i][0], 'in the positive x direction')
+        print("For degree of freedom", dof[i][1], "the load is", loads[i][1], 'in the positive y direction')
+
+# 2. Pre-Processing
+# a. Assembly of element matrices
+
+# b. Superposition of matrices - Global stiffness of the structure
+K = np.zeros((2 * len(nodes), 2 * len(nodes)))
+for (i, j), matrix in element_matrices.items():
+    # Get the global degree of freedom indices for the nodes of the element
+    dof_indices = dof[i] + dof[j]
+    for m in range(4):
+        for n in range(4):
+            K[dof_indices[m]][dof_indices[n]] += matrix[m][n]
+
+print('\nGlobal stiffness matrix:')
+print(K)
+
+# c. Assembly of the global load vector of the structure
+F = np.zeros(2 * len(nodes))
+for dof, load in loads_dict.items():
+    F[dof] = load
+
+# d. Application of boundary conditions
+for dof in restricted_dof:
+    K[dof] = np.zeros(2 * len(nodes))
+    K[:,dof] = np.zeros(2 * len(nodes))
+    K[dof][dof] = 1
+    F[dof] = 0
+
+# Ensure that the main diagonal of K is not zero
+for i in range(len(K)):
+    if round(K[i][i], 3) == 0:
+        K[i][i] = 1
+
+K_copy = K.copy()
+
+print(f'\nInverse Matrix:')
+
+# Print the K matrix
+for i in range(len(K)):
+    for j in range(len(K[i])):
+        print(f'{K[i][j]:.2f}', end=' ')
+    print()
+
+# e. Solving the system of equations
+# Ensuring that F has the same size as the solution vector
+F = F.reshape((2 * len(nodes), 1))
+
+# Now solving the system
+displacements = np.linalg.solve(K, F)
+
+print('\nNodal force matrix (in N):')
+print(F)
+
+print('\nDisplacements at nodes (in meters):')
+for i in range(len(nodes)):
+    print(f'Node {i}: ({displacements[2*i][0]}, {displacements[2*i+1][0]})')
+
+# f. Calculating the stress in each element
+stress_list = []
+print('\nStress in each element (in Pa):')
+for i in range(len(element_list)):
+    node1 = nodes[element_list[i][0]]
+    node2 = nodes[element_list[i][1]]
+
+    x1, y1 = float(node1[0]), float(node1[1])
+    x2, y2 = float(node2[0]), float(node2[1])
+    L = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
+    c = (x2 - x1) / L
+    s = (y2 - y1) / L
+
+    displacement1 = displacements[2*element_list[i][0]:2*element_list[i][0]+2]
+    displacement2 = displacements[2*element_list[i][1]:2*element_list[i][1]+2]
+
+    stress = (float(elasticity) / L) * np.array([-c, -s, c, s]).dot(np.concatenate((displacement1, displacement2)))
+    stress_list.append(stress)
+    print(f'Element {i}: {stress[0]}')
+
+# g. Calculating the reactions at the support nodes
+# Calculating reaction forces through stress and area
+reactions = {}
+
+print('\nReaction forces in each element (in N):')
+for i in range(len(element_list)):
+    node1 = nodes[element_list[i][0]]
+    node2 = nodes[element_list[i][1]]
+    x1, y1 = float(node1[0]), float(node1[1])
+    x2, y2 = float(node2[0]), float(node2[1])
+    L = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
+    c = (x2 - x1) / L
+    s = (y2 - y1) / L
+    displacement1 = displacements[2*element_list[i][0]:2*element_list[i][0]+2]
+    displacement2 = displacements[2*element_list[i][1]:2*element_list[i][1]+2]
+    stress = (float(elasticity) / L) * np.array([-c, -s, c, s]).dot(np.concatenate((displacement1, displacement2)))
+    reactions[i] = stress * float(area)
+    print(f'Element {i}: {reactions[i]}')
+    
+
+# 4
+def gauss_seidel(A, b, max_iter=90, tol=1e-20):
+    x = np.zeros_like(b)
+    for it_count in range(max_iter):
+        x_new = np.zeros_like(x)
+        for i in range(A.shape[0]):
+            s1 = np.dot(A[i, :i], x[:i])
+            s2 = np.dot(A[i, i + 1:], x[i + 1:])
+            x_new[i] = (b[i] - s1 - s2) / A[i, i]
+        if np.allclose(x, x_new, rtol=tol):
+            break
+        x = x_new
+    return x
+
+A = [[3, -0.1, -0.2], [0.1, 7, -0.3], [0.3, -0.2, 10]]
+B = [7.85, -19.3, 71.4]
+
+print('\nSolution of the linear equations system with the Gauss-Seidel method:')
+print(gauss_seidel(np.array(A), np.array(B)))
+
+# Comparing the displacement from linalg (already calculated) and gauss_seidel
+print('\nComparison between numpy.linalg.solve and Gauss-Seidel:')
+print('Displacements (in meters):')
+print('Numpy:', displacements)
+print('Gauss-Seidel:', gauss_seidel(K_copy, F))
+
+# 5. Analysis of stress conditions in each element
+print('\nAnalysis of stress conditions in each element:')
+
+rupture = float(rupture)
+
+for i in range(len(element_list)):
+    # a. Failure by stress
+    if abs(stress_list[i]) > rupture:
+        print(f'Element {i}: Failure by stress. Stress of {stress_list[i]} is greater than the rupture stress {rupture}.')
+
+    # b. Failure by buckling
+    # The critical buckling load (Pcr) for a column with fixed ends is given by Pcr = pi^2*EI/(KL)^2
+    # where E is the modulus of elasticity, I is the moment of inertia, K is the column coefficient (1 for fixed ends), and L is the length of the column.
+    # For a bar with a circular cross-section, I = pi*r^4/4, where r is the radius of the cross-section.
+    # Assuming the cross-sectional area is a circle, we can calculate the radius as r = sqrt(area/pi).
+    # Assuming the bar is a column with fixed ends, K = 1.
+    # Therefore, the critical buckling load is Pcr = pi^2*E*(pi*r^4/4)/(L^2) = pi^3*E*r^4/(4*L^2).
+    # The buckling stress is then Pcr/area = pi^3*E*r^4/(4*L^2*area) = pi^3*E*r^2/(4*L^2) = pi^3*E/(4*L^2*(area/pi)) = pi^2*E/(4*L^2/r^2) = pi^2*E*r^2/(4*L^2).
+    # The buckling load is the buckling stress times the area, or Pcr = pi^2*E*r^2/(4*L^2)*area = pi^2*E*area/(4*L^2/r^2) = pi^2*E*area*r^2/(4*L^2).
+    # Therefore, if the stress in the element is negative (compression) and the magnitude of the stress is greater than the buckling stress, the element fails by buckling.
+    r = np.sqrt(float(area) / np.pi)
+    Pcr = np.pi**2 * float(elasticity) * float(area) * r**2 / (4 * L**2)
+    if stress_list[i] < 0 and abs(stress_list[i]) > Pcr:
+        print(f'Element {i}: Failure by buckling. Magnitude of compressive stress {abs(stress_list[i])} is greater than the critical buckling load {Pcr}.')