-
-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathPPC-discrete.Rd
228 lines (201 loc) · 6.85 KB
/
PPC-discrete.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ppc-discrete.R
\name{PPC-discrete}
\alias{PPC-discrete}
\alias{ppc_bars}
\alias{ppc_bars_grouped}
\alias{ppc_rootogram}
\alias{ppc_bars_data}
\title{PPCs for discrete outcomes}
\usage{
ppc_bars(
y,
yrep,
...,
prob = 0.9,
width = 0.9,
size = 1,
fatten = 2.5,
linewidth = 1,
freq = TRUE
)
ppc_bars_grouped(
y,
yrep,
group,
...,
facet_args = list(),
prob = 0.9,
width = 0.9,
size = 1,
fatten = 2.5,
linewidth = 1,
freq = TRUE
)
ppc_rootogram(
y,
yrep,
style = c("standing", "hanging", "suspended"),
...,
prob = 0.9,
size = 1
)
ppc_bars_data(y, yrep, group = NULL, prob = 0.9, freq = TRUE)
}
\arguments{
\item{y}{A vector of observations. See \strong{Details}.}
\item{yrep}{An \code{S} by \code{N} matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, \code{S}, is the size of the
posterior (or prior) sample used to generate \code{yrep}. The number of columns,
\code{N} is the number of predicted observations (\code{length(y)}). The columns of
\code{yrep} should be in the same order as the data points in \code{y} for the plots
to make sense. See the \strong{Details} and \strong{Plot Descriptions} sections for
additional advice specific to particular plots.}
\item{...}{Currently unused.}
\item{prob}{A value between \code{0} and \code{1} indicating the desired probability
mass to include in the \code{yrep} intervals. Set \code{prob=0} to remove the
intervals. (Note: for rootograms these are intervals of the \emph{square roots}
of the expected counts.)}
\item{width}{For bar plots only, passed to \code{\link[ggplot2:geom_bar]{ggplot2::geom_bar()}} to control
the bar width.}
\item{size, fatten, linewidth}{For bar plots, \code{size}, \code{fatten}, and \code{linewidth}
are passed to \code{\link[ggplot2:geom_linerange]{ggplot2::geom_pointrange()}} to control the appearance of the
\code{yrep} points and intervals. For rootograms \code{size} is passed to
\code{\link[ggplot2:geom_path]{ggplot2::geom_line()}}.}
\item{freq}{For bar plots only, if \code{TRUE} (the default) the y-axis will
display counts. Setting \code{freq=FALSE} will put proportions on the y-axis.}
\item{group}{A grouping variable of the same length as \code{y}.
Will be coerced to \link[base:factor]{factor} if not already a factor.
Each value in \code{group} is interpreted as the group level pertaining
to the corresponding observation.}
\item{facet_args}{An optional list of arguments (other than \code{facets})
passed to \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}} to control faceting.}
\item{style}{For \code{ppc_rootogram}, a string specifying the rootogram
style. The options are \code{"standing"}, \code{"hanging"}, and
\code{"suspended"}. See the \strong{Plot Descriptions} section, below, for
details on the different styles.}
}
\value{
The plotting functions return a ggplot object that can be further
customized using the \strong{ggplot2} package. The functions with suffix
\verb{_data()} return the data that would have been drawn by the plotting
function.
}
\description{
Many of the \link[=PPC-overview]{PPC} functions in \strong{bayesplot} can
be used with discrete data. The small subset of these functions that can
\emph{only} be used if \code{y} and \code{yrep} are discrete are documented
on this page. Currently these include rootograms for count outcomes and bar
plots for ordinal, categorical, and multinomial outcomes. See the
\strong{Plot Descriptions} section below.
}
\details{
For all of these plots \code{y} and \code{yrep} must be integers, although
they need not be integers in the strict sense of \R's
\link[base:integer]{integer} type. For rootogram plots \code{y} and \code{yrep} must also
be non-negative.
}
\section{Plot Descriptions}{
\describe{
\item{\code{ppc_bars()}}{
Bar plot of \code{y} with \code{yrep} medians and uncertainty intervals
superimposed on the bars.
}
\item{\code{ppc_bars_grouped()}}{
Same as \code{ppc_bars()} but a separate plot (facet) is generated for each
level of a grouping variable.
}
\item{\code{ppc_rootogram()}}{
Rootograms allow for diagnosing problems in count data models such as
overdispersion or excess zeros. They consist of a histogram of \code{y} with the
expected counts based on \code{yrep} overlaid as a line along with uncertainty
intervals. The y-axis represents the square roots of the counts to
approximately adjust for scale differences and thus ease comparison between
observed and expected counts. Using the \code{style} argument, the histogram
style can be adjusted to focus on different aspects of the data:
\itemize{
\item \emph{Standing}: basic histogram of observed counts with curve
showing expected counts.
\item \emph{Hanging}: observed counts counts hanging from the curve
representing expected counts.
\item \emph{Suspended}: histogram of the differences between expected and
observed counts.
}
\strong{All of the rootograms are plotted on the square root scale}. See Kleiber
and Zeileis (2016) for advice on interpreting rootograms and selecting
among the different styles.
}
}
}
\examples{
set.seed(9222017)
# bar plots
f <- function(N) {
sample(1:4, size = N, replace = TRUE, prob = c(0.25, 0.4, 0.1, 0.25))
}
y <- f(100)
yrep <- t(replicate(500, f(100)))
dim(yrep)
group <- gl(2, 50, length = 100, labels = c("GroupA", "GroupB"))
color_scheme_set("mix-pink-blue")
ppc_bars(y, yrep)
# split by group, change interval width, and display proportion
# instead of count on y-axis
color_scheme_set("mix-blue-pink")
ppc_bars_grouped(y, yrep, group, prob = 0.5, freq = FALSE)
\dontrun{
# example for ordinal regression using rstanarm
library(rstanarm)
fit <- stan_polr(
tobgp ~ agegp,
data = esoph,
method = "probit",
prior = R2(0.2, "mean"),
init_r = 0.1,
seed = 12345,
# cores = 4,
refresh = 0
)
# coded as character, so convert to integer
yrep_char <- posterior_predict(fit)
print(yrep_char[1, 1:4])
yrep_int <- sapply(data.frame(yrep_char, stringsAsFactors = TRUE), as.integer)
y_int <- as.integer(esoph$tobgp)
ppc_bars(y_int, yrep_int)
ppc_bars_grouped(
y = y_int,
yrep = yrep_int,
group = esoph$agegp,
freq=FALSE,
prob = 0.5,
fatten = 1,
size = 1.5
)
}
# rootograms for counts
y <- rpois(100, 20)
yrep <- matrix(rpois(10000, 20), ncol = 100)
color_scheme_set("brightblue")
ppc_rootogram(y, yrep)
ppc_rootogram(y, yrep, prob = 0)
ppc_rootogram(y, yrep, style = "hanging", prob = 0.8)
ppc_rootogram(y, yrep, style = "suspended")
}
\references{
Kleiber, C. and Zeileis, A. (2016).
Visualizing count data regressions using rootograms.
\emph{The American Statistician}. 70(3): 296--303.
\url{https://arxiv.org/abs/1605.01311}.
}
\seealso{
Other PPCs:
\code{\link{PPC-censoring}},
\code{\link{PPC-distributions}},
\code{\link{PPC-errors}},
\code{\link{PPC-intervals}},
\code{\link{PPC-loo}},
\code{\link{PPC-overview}},
\code{\link{PPC-scatterplots}},
\code{\link{PPC-test-statistics}}
}
\concept{PPCs}