-
-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathPPC-scatterplots.Rd
149 lines (131 loc) · 4.66 KB
/
PPC-scatterplots.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ppc-scatterplots.R
\name{PPC-scatterplots}
\alias{PPC-scatterplots}
\alias{ppc_scatter}
\alias{ppc_scatter_avg}
\alias{ppc_scatter_avg_grouped}
\alias{ppc_scatter_data}
\alias{ppc_scatter_avg_data}
\title{PPC scatterplots}
\usage{
ppc_scatter(
y,
yrep,
...,
facet_args = list(),
size = 2.5,
alpha = 0.8,
ref_line = TRUE
)
ppc_scatter_avg(y, yrep, ..., size = 2.5, alpha = 0.8, ref_line = TRUE)
ppc_scatter_avg_grouped(
y,
yrep,
group,
...,
facet_args = list(),
size = 2.5,
alpha = 0.8,
ref_line = TRUE
)
ppc_scatter_data(y, yrep)
ppc_scatter_avg_data(y, yrep, group = NULL)
}
\arguments{
\item{y}{A vector of observations. See \strong{Details}.}
\item{yrep}{An \code{S} by \code{N} matrix of draws from the posterior (or prior)
predictive distribution. The number of rows, \code{S}, is the size of the
posterior (or prior) sample used to generate \code{yrep}. The number of columns,
\code{N} is the number of predicted observations (\code{length(y)}). The columns of
\code{yrep} should be in the same order as the data points in \code{y} for the plots
to make sense. See the \strong{Details} and \strong{Plot Descriptions} sections for
additional advice specific to particular plots.}
\item{...}{Currently unused.}
\item{facet_args}{A named list of arguments (other than \code{facets}) passed
to \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}} or \code{\link[ggplot2:facet_grid]{ggplot2::facet_grid()}}
to control faceting. Note: if \code{scales} is not included in \code{facet_args}
then \strong{bayesplot} may use \code{scales="free"} as the default (depending
on the plot) instead of the \strong{ggplot2} default of \code{scales="fixed"}.}
\item{size, alpha}{Arguments passed to \code{\link[ggplot2:geom_point]{ggplot2::geom_point()}} to control the
appearance of the points.}
\item{ref_line}{If \code{TRUE} (the default) a dashed line with intercept 0 and
slope 1 is drawn behind the scatter plot.}
\item{group}{A grouping variable of the same length as \code{y}.
Will be coerced to \link[base:factor]{factor} if not already a factor.
Each value in \code{group} is interpreted as the group level pertaining
to the corresponding observation.}
}
\value{
The plotting functions return a ggplot object that can be further
customized using the \strong{ggplot2} package. The functions with suffix
\verb{_data()} return the data that would have been drawn by the plotting
function.
}
\description{
Scatterplots of the observed data \code{y} vs. simulated/replicated data
\code{yrep} from the posterior predictive distribution. See the
\strong{Plot Descriptions} and \strong{Details} sections, below.
}
\details{
For Binomial data, the plots may be more useful if
the input contains the "success" \emph{proportions} (not discrete
"success" or "failure" counts).
}
\section{Plot Descriptions}{
\describe{
\item{\code{ppc_scatter()}}{
For each dataset (row) in \code{yrep} a scatterplot is generated showing \code{y}
against that row of \code{yrep}. For this plot \code{yrep} should only contain a
small number of rows.
}
\item{\code{ppc_scatter_avg()}}{
A single scatterplot of \code{y} against the average values of \code{yrep}, i.e.,
the points \verb{(x,y) = (mean(yrep[, n]), y[n])}, where each \code{yrep[, n]} is
a vector of length equal to the number of posterior draws. Unlike
for \code{ppc_scatter()}, for \code{ppc_scatter_avg()} \code{yrep} should contain many
draws (rows).
}
\item{\code{ppc_scatter_avg_grouped()}}{
The same as \code{ppc_scatter_avg()}, but a separate plot is generated for
each level of a grouping variable.
}
}
}
\examples{
y <- example_y_data()
yrep <- example_yrep_draws()
p1 <- ppc_scatter_avg(y, yrep)
p1
# don't draw line x=y
ppc_scatter_avg(y, yrep, ref_line = FALSE)
p2 <- ppc_scatter(y, yrep[20:23, ], alpha = 0.5, size = 1.5)
p2
# give x and y axes the same limits
lims <- ggplot2::lims(x = c(0, 160), y = c(0, 160))
p1 + lims
p2 + lims
# for ppc_scatter_avg_grouped the default is to allow the facets
# to have different x and y axes
group <- example_group_data()
ppc_scatter_avg_grouped(y, yrep, group)
# let x-axis vary but force y-axis to be the same
ppc_scatter_avg_grouped(y, yrep, group, facet_args = list(scales = "free_x"))
}
\references{
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari,
A., and Rubin, D. B. (2013). \emph{Bayesian Data Analysis.} Chapman & Hall/CRC
Press, London, third edition. (Ch. 6)
}
\seealso{
Other PPCs:
\code{\link{PPC-censoring}},
\code{\link{PPC-discrete}},
\code{\link{PPC-distributions}},
\code{\link{PPC-errors}},
\code{\link{PPC-intervals}},
\code{\link{PPC-loo}},
\code{\link{PPC-overview}},
\code{\link{PPC-test-statistics}}
}
\concept{PPCs}