-
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathbayesplot-package.Rd
136 lines (117 loc) · 4.56 KB
/
bayesplot-package.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/bayesplot-package.R
\docType{package}
\name{bayesplot-package}
\alias{bayesplot-package}
\alias{bayesplot}
\title{\strong{bayesplot}: Plotting for Bayesian Models}
\description{
\if{html}{
\figure{stanlogo.png}{options: width="50" alt="mc-stan.org"}
}
\emph{Stan Development Team}
The \strong{bayesplot} package provides a variety of \strong{ggplot2}-based
plotting functions for use after fitting Bayesian models (typically, though
not exclusively, via Markov chain Monte Carlo). The package is designed not
only to provide convenient functionality for users, but also a common set of
functions that can be easily used by developers working on a variety of
packages for Bayesian modeling, particularly (but not necessarily) packages
powered by RStan (the \R interface to Stan).
Examples of packages that will soon (or already are) using \strong{bayesplot} are
\strong{rstan} itself, as well as the \strong{rstan}-dependent \strong{rstanarm} and
\strong{brms} packages for applied regression modeling.
}
\section{Plotting functionality}{
\if{html}{
\figure{bayesplot1.png}{options: width="30\%" alt="mcmc_areas"}
\figure{bayesplot2.png}{options: width="30\%" alt="ppc_hist"}
\figure{bayesplot3.png}{options: width="30\%" alt="ppc_dens_overlay"}
}
The plotting functions in \strong{bayesplot} are organized into several modules:
\itemize{
\item \link[=MCMC-overview]{MCMC}: Visualizations of Markov chain
Monte Carlo (MCMC) simulations generated by \emph{any} MCMC algorithm
as well as diagnostics. There are also additional functions specifically
for use with models fit using the \link[=NUTS]{No-U-Turn Sampler (NUTS)}.
\item \link[=PPC-overview]{PPC}: Graphical (posterior or prior) predictive
checks (PPCs).
\item \link[=PPD-overview]{PPD}: Plots of (posterior or prior) predictive
distributions without comparisons to observed data.
}
}
\section{Resources}{
\itemize{
\item \strong{Online documentation and vignettes}: Visit the \strong{bayesplot} website at
\url{https://mc-stan.org/bayesplot/}
\item \strong{Bug reports and feature requests}: If you would like to request a new
feature or if you have noticed a bug that needs to be fixed please let us
know at the \strong{bayesplot} issue tracker at
\url{https://github.com/stan-dev/bayesplot/issues/}
\item \strong{General questions and help}:
To ask a question about \strong{bayesplot} on the Stan Forums forum please visit
\url{https://discourse.mc-stan.org}.
}
}
\examples{
# A few quick examples (all of the functions have many examples
# on their individual help pages)
# MCMC plots
x <- example_mcmc_draws(params = 5)
mcmc_intervals(x, prob = 0.5)
mcmc_intervals(x, regex_pars = "beta")
color_scheme_set("purple")
mcmc_areas(x, regex_pars = "beta", prob = 0.8)
color_scheme_set("mix-blue-red")
mcmc_trace(x, pars = c("alpha", "sigma"),
facet_args = list(nrow = 2))
color_scheme_set("brightblue")
mcmc_scatter(x, pars = c("beta[1]", "sigma"),
transformations = list(sigma = "log"))
# Graphical PPCs
y <- example_y_data()
yrep <- example_yrep_draws()
ppc_dens_overlay(y, yrep[1:50, ])
\donttest{
color_scheme_set("pink")
ppc_stat(y, yrep, stat = "median") + grid_lines()
ppc_hist(y, yrep[1:8, ])
# Same plots but without y (using ppd_ instead of ppc_)
bayesplot_theme_set(ggplot2::theme_gray())
ypred <- yrep
ppd_dens_overlay(ypred[1:50, ])
ppd_stat(ypred, stat = "median") + grid_lines()
ppd_hist(ypred[1:8, ])
}
}
\references{
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and
Gelman, A. (2019), Visualization in Bayesian workflow.
\emph{J. R. Stat. Soc. A}, 182: 389-402. doi:10.1111/rssa.12378.
(\href{https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378}{journal version},
\href{https://arxiv.org/abs/1709.01449}{arXiv preprint},
\href{https://github.com/jgabry/bayes-vis-paper}{code on GitHub})
}
\seealso{
\code{\link[=theme_default]{theme_default()}} for the default ggplot theme used by
\strong{bayesplot} and \code{\link[=bayesplot_theme_set]{bayesplot_theme_set()}} to change it.
\link{bayesplot-colors} to set or view the color scheme used
for plotting.
\code{\link[ggplot2:ggsave]{ggplot2::ggsave()}} for saving plots.
}
\author{
\strong{Maintainer}: Jonah Gabry \email{jsg2201@columbia.edu}
Authors:
\itemize{
\item Tristan Mahr
}
Other contributors:
\itemize{
\item Paul-Christian Bürkner [contributor]
\item Martin Modrák [contributor]
\item Malcolm Barrett [contributor]
\item Frank Weber [contributor]
\item Eduardo Coronado Sroka [contributor]
\item Teemu Sailynoja [contributor]
\item Aki Vehtari [contributor]
}
}