-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathvisulize_help.py
148 lines (133 loc) · 5.74 KB
/
visulize_help.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy
import tensorflow as tf
def batch_norm_func(y, out_size):
# Batch Normalize
fc_mean, fc_var = tf.nn.moments(
y,
axes=[0], # the dimension you wanna normalize, here [0] for batch
# for image, you wanna do [0, 1, 2] for [batch, height, width] but not channel
)
scale = tf.Variable(tf.ones([out_size]))
shift = tf.Variable(tf.zeros([out_size]))
epsilon = 0.001
# apply moving average for mean and var when train on batch
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([fc_mean, fc_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(fc_mean), tf.identity(fc_var)
mean, var = mean_var_with_update()
y = tf.nn.batch_normalization(y, mean, var, shift, scale, epsilon)
return y
def scale_to_unit_interval(ndar, eps=1e-8):
""" Scales all values in the ndarray ndar to be between 0 and 1 """
ndar = ndar.copy()
ndar -= ndar.min()
ndar *= 1.0 / (ndar.max() + eps)
return ndar
def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
scale_rows_to_unit_interval=True,
output_pixel_vals=True):
"""
Transform an array with one flattened image per row into an array in
which images are reshaped and layed out like tiles on a floor.
This function is useful for visualizing datasets whose rows are images,
and also columns of matrices for transforming those rows
(such as the first layer of a neural net).
:type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
be 2-D ndarrays or None;
:param X: a 2-D array in which every row is a flattened image.
:type img_shape: tuple; (height, width)
:param img_shape: the original shape of each image
:type tile_shape: tuple; (rows, cols)
:param tile_shape: the number of images to tile (rows, cols),
在每行每列上分别有多少个图像
:param output_pixel_vals: if output should be pixel values (i.e. int8
values) or floats 是否以图像的形式进行显示
:param scale_rows_to_unit_interval: if the values need to be scaled before
being plotted to [0,1] or not
:returns: array suitable for viewing as an image.
(See:`Image.fromarray`.)
:rtype: a 2-d array with same dtype as X.
"""
# 对参数进行断言,确保它们都是二维元组
assert len(img_shape) == 2
assert len(tile_shape) == 2
assert len(tile_spacing) == 2
# The expression below can be re-written in a more C style as
# follows :
#
# out_shape = [0,0]
# out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
# tile_spacing[0]
# out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
# tile_spacing[1]
out_shape = [
(ishp + tsp) * tshp - tsp
for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)
]
if isinstance(X, tuple):
assert len(X) == 4
# Create an output numpy ndarray to store the image
if output_pixel_vals:
out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
dtype='uint8')
else:
out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
dtype=X.dtype)
# colors default to 0, alpha defaults to 1 (opaque)
if output_pixel_vals:
channel_defaults = [0, 0, 0, 255]
else:
channel_defaults = [0., 0., 0., 1.]
for i in range(4):
if X[i] is None:
# if channel is None, fill it with zeros of the correct
# dtype
dt = out_array.dtype
if output_pixel_vals:
dt = 'uint8'
out_array[:, :, i] = numpy.zeros(
out_shape,
dtype=dt
) + channel_defaults[i]
else:
# use a recurrent call to compute the channel and store it
# in the output
out_array[:, :, i] = tile_raster_images(
X[i], img_shape, tile_shape, tile_spacing,
scale_rows_to_unit_interval, output_pixel_vals)
return out_array
else:
# if we are dealing with only one channel
H, W = img_shape
Hs, Ws = tile_spacing
# generate a matrix to store the output
dt = X.dtype
if output_pixel_vals:
dt = 'uint8'
out_array = numpy.zeros(out_shape, dtype=dt)
# begin to tile the images
for tile_row in range(tile_shape[0]):
for tile_col in range(tile_shape[1]):
# a 2-D array in which every row is a flattened image
if tile_row * tile_shape[1] + tile_col < X.shape[0]:
this_x = X[tile_row * tile_shape[1] + tile_col]
if scale_rows_to_unit_interval:
# if we should scale values to be between 0 and 1
# do this by calling the `scale_to_unit_interval`
# function
this_img = scale_to_unit_interval(
this_x.reshape(img_shape))
else:
this_img = this_x.reshape(img_shape)
# add the slice to the corresponding position in the
# output array
c = 1
if output_pixel_vals:
c = 255
out_array[
tile_row * (H + Hs): tile_row * (H + Hs) + H,
tile_col * (W + Ws): tile_col * (W + Ws) + W
] = this_img * c
return out_array