Skip to content

Latest commit

 

History

History
 
 

linear_models

Linear Models

The linear_models module includes:

  1. OLS linear regression with maximum likelihood parameter estimates via the normal equation.
    • Includes optional weight arguments for weighted least squares
    • Supports batch and online coefficient updates.
  2. Ridge regression / Tikhonov regularization with maximum likelihood parameter estimates via the normal equation.
  3. Logistic regression with maximum likelihood parameter estimates via gradient descent.
  4. Bayesian linear regression with maximum a posteriori parameter estimates via conjugacy
    • Known coefficient prior mean and known error variance
    • Known coefficient prior mean and unknown error variance
  5. Naive Bayes classifier with Gaussian feature likelihoods.
  6. Generalized linear model with identity, log, and logit link functions.

Plots