The cleartext boolean Trivium is available to be built using the function TriviumStream::<bool>::new
.
This takes as input 2 arrays of 80 bool: the Trivium key and the IV. After initialization, it returns a TriviumStream on
which the user can call next
, getting the next bit of the cipher stream, or next_64
, which will compute 64 values at once,
using multithreading to accelerate the computation.
Quite similarly, the function TriviumStream::<FheBool>::new
will return a very similar object running in FHE space. Its arguments are
2 arrays of 80 FheBool representing the encrypted Trivium key, and the encrypted IV. It also requires a reference to the server key of the
current scheme. This means that any user of this feature must also have the tfhe-rs
crate as a dependency.
Example of a Rust main below:
use tfhe::{ConfigBuilder, generate_keys, FheBool};
use tfhe::prelude::*;
use tfhe_trivium::TriviumStream;
fn get_hexadecimal_string_from_lsb_first_stream(a: Vec<bool>) -> String {
assert!(a.len() % 8 == 0);
let mut hexadecimal: String = "".to_string();
for test in a.chunks(8) {
// Encoding is bytes in LSB order
match test[4..8] {
[false, false, false, false] => hexadecimal.push('0'),
[true, false, false, false] => hexadecimal.push('1'),
[false, true, false, false] => hexadecimal.push('2'),
[true, true, false, false] => hexadecimal.push('3'),
[false, false, true, false] => hexadecimal.push('4'),
[true, false, true, false] => hexadecimal.push('5'),
[false, true, true, false] => hexadecimal.push('6'),
[true, true, true, false] => hexadecimal.push('7'),
[false, false, false, true] => hexadecimal.push('8'),
[true, false, false, true] => hexadecimal.push('9'),
[false, true, false, true] => hexadecimal.push('A'),
[true, true, false, true] => hexadecimal.push('B'),
[false, false, true, true] => hexadecimal.push('C'),
[true, false, true, true] => hexadecimal.push('D'),
[false, true, true, true] => hexadecimal.push('E'),
[true, true, true, true] => hexadecimal.push('F'),
_ => ()
};
match test[0..4] {
[false, false, false, false] => hexadecimal.push('0'),
[true, false, false, false] => hexadecimal.push('1'),
[false, true, false, false] => hexadecimal.push('2'),
[true, true, false, false] => hexadecimal.push('3'),
[false, false, true, false] => hexadecimal.push('4'),
[true, false, true, false] => hexadecimal.push('5'),
[false, true, true, false] => hexadecimal.push('6'),
[true, true, true, false] => hexadecimal.push('7'),
[false, false, false, true] => hexadecimal.push('8'),
[true, false, false, true] => hexadecimal.push('9'),
[false, true, false, true] => hexadecimal.push('A'),
[true, true, false, true] => hexadecimal.push('B'),
[false, false, true, true] => hexadecimal.push('C'),
[true, false, true, true] => hexadecimal.push('D'),
[false, true, true, true] => hexadecimal.push('E'),
[true, true, true, true] => hexadecimal.push('F'),
_ => ()
};
}
return hexadecimal;
}
fn main() {
let config = ConfigBuilder::default().build();
let (client_key, server_key) = generate_keys(config);
let key_string = "0053A6F94C9FF24598EB".to_string();
let mut key = [false; 80];
for i in (0..key_string.len()).step_by(2) {
let mut val: u8 = u8::from_str_radix(&key_string[i..i+2], 16).unwrap();
for j in 0..8 {
key[8*(i>>1) + j] = val % 2 == 1;
val >>= 1;
}
}
let iv_string = "0D74DB42A91077DE45AC".to_string();
let mut iv = [false; 80];
for i in (0..iv_string.len()).step_by(2) {
let mut val: u8 = u8::from_str_radix(&iv_string[i..i+2], 16).unwrap();
for j in 0..8 {
iv[8*(i>>1) + j] = val % 2 == 1;
val >>= 1;
}
}
let output_0_63 = "F4CD954A717F26A7D6930830C4E7CF0819F80E03F25F342C64ADC66ABA7F8A8E6EAA49F23632AE3CD41A7BD290A0132F81C6D4043B6E397D7388F3A03B5FE358".to_string();
let cipher_key = key.map(|x| FheBool::encrypt(x, &client_key));
let cipher_iv = iv.map(|x| FheBool::encrypt(x, &client_key));
let mut trivium = TriviumStream::<FheBool>::new(cipher_key, cipher_iv, &server_key);
let mut vec = Vec::<bool>::with_capacity(64*8);
while vec.len() < 64*8 {
let cipher_outputs = trivium.next_64();
for c in cipher_outputs {
vec.push(c.decrypt(&client_key))
}
}
let hexadecimal = get_hexadecimal_string_from_lsb_first_stream(vec);
assert_eq!(output_0_63, hexadecimal[0..64*2]);
}
The same objects have also been implemented to stream bytes instead of booleans. They can be constructed and used in the same way via the functions TriviumStreamByte::<u8>::new
and
TriviumStreamByte::<FheUint8>::new
with the same arguments as before. The FheUint8
version is significantly slower than the FheBool
version, because not running
with the same cryptographic parameters. Its interest lie in its trans-ciphering capabilities: TriviumStreamByte<FheUint8>
implements the trait TransCiphering
,
meaning it implements the functions trans_encrypt_64
. This function takes as input a FheUint64
and outputs a FheUint64
, the output being
encrypted via tfhe and trivium. For convenience we also provide trans_decrypt_64
, but this is of course the exact same function.
Other sizes than 64 bit are expected to be available in the future.
The same implementation is also available for generic Ciphertexts representing bits (meant to be used with parameters V1_1_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128
).
It uses a lower level API of tfhe-rs, so the syntax is a little bit different. It also implements the TransCiphering
trait. For optimization purposes, it does not internally run
on the same cryptographic parameters as the high level API of tfhe-rs. As such, it requires the usage of a casting key, to switch from one parameter space to another, which makes
its setup a little more intricate.
Example code:
use tfhe::shortint::prelude::*;
use tfhe::shortint::parameters::v1_1::{
V1_1_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
V1_1_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
V1_1_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
};
use tfhe::{ConfigBuilder, generate_keys, FheUint64};
use tfhe::prelude::*;
use tfhe_trivium::TriviumStreamShortint;
fn test_shortint() {
let config = ConfigBuilder::default()
.use_custom_parameters(V1_1_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
.build();
let (hl_client_key, hl_server_key) = generate_keys(config);
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
let (client_key, server_key): (ClientKey, ServerKey) = gen_keys(V1_1_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
let ksk = KeySwitchingKey::new(
(&client_key, Some(&server_key)),
(&underlying_ck, &underlying_sk),
V1_1_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128_2M128,
);
let key_string = "0053A6F94C9FF24598EB".to_string();
let mut key = [0; 80];
for i in (0..key_string.len()).step_by(2) {
let mut val = u64::from_str_radix(&key_string[i..i+2], 16).unwrap();
for j in 0..8 {
key[8*(i>>1) + j] = val % 2;
val >>= 1;
}
}
let iv_string = "0D74DB42A91077DE45AC".to_string();
let mut iv = [0; 80];
for i in (0..iv_string.len()).step_by(2) {
let mut val = u64::from_str_radix(&iv_string[i..i+2], 16).unwrap();
for j in 0..8 {
iv[8*(i>>1) + j] = val % 2;
val >>= 1;
}
}
let output_0_63 = "F4CD954A717F26A7D6930830C4E7CF0819F80E03F25F342C64ADC66ABA7F8A8E6EAA49F23632AE3CD41A7BD290A0132F81C6D4043B6E397D7388F3A03B5FE358".to_string();
let cipher_key = key.map(|x| client_key.encrypt(x));
let cipher_iv = iv.map(|x| client_key.encrypt(x));
let mut ciphered_message = vec![FheUint64::try_encrypt(0u64, &hl_client_key).unwrap(); 9];
let mut trivium = TriviumStreamShortint::new(cipher_key, cipher_iv, &server_key, &ksk);
let mut vec = Vec::<u64>::with_capacity(8);
while vec.len() < 8 {
let trans_ciphered_message = trivium.trans_encrypt_64(ciphered_message.pop().unwrap(), &hl_server_key);
vec.push(trans_ciphered_message.decrypt(&hl_client_key));
}
let hexadecimal = get_hexagonal_string_from_u64(vec);
assert_eq!(output_0_63, hexadecimal[0..64*2]);
}
This will work in exactly the same way as the Trivium implementation, except that the key and iv need to be 128 bits now. Available for the same internal types as Trivium, with similar syntax.
KreyviumStreamByte<FheUint8>
and KreyviumStreamShortint
also implement the TransCiphering
trait.
If you wish to run tests on this app, please run cargo test -r trivium -- --test-threads=1
as multithreading provokes interferences between several running
Triviums at the same time.