Skip to content

lab1 part 2 (2.14) is failing with tensorflow 2.16 #160

Open
@moltencrux

Description

@moltencrux

{
"name": "ValueError",
"message": "Unrecognized keyword arguments passed to Embedding: {'batch_input_shape': [32, None]}",
"stack": "---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/home/user/dev/introtodeeplearning/lab1/Part2_Music_Generation.ipynb Cell 29 line 2
24 return model
26 # Build a simple model with default hyperparameters. You will get the
27 # chance to change these later.
---> 28 model = build_model(len(vocab), embedding_dim=256, rnn_units=1024, batch_size=32)

/home/user/dev/introtodeeplearning/lab1/Part2_Music_Generation.ipynb Cell 29 line 8
4 def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
5 model = tf.keras.Sequential([
6 # Layer 1: Embedding layer to transform indices into dense vectors
7 # of a fixed embedding size
----> 8 tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]),
9 # tf.keras.layers.Embedding(vocab_size, embedding_dim, input_shape=batch_size),
10 #tf.keras.layers.Embedding(vocab_size, embedding_dim, input_shape=(batch_size, None)),
11
12 # Layer 2: LSTM with rnn_units number of units.
13 # TODO: Call the LSTM function defined above to add this layer.
14 LSTM(rnn_units),
15 # LSTM('''TODO'''),
16
17 # Layer 3: Dense (fully-connected) layer that transforms the LSTM output
18 # into the vocabulary size.
19 # TODO: Add the Dense layer.
20 tf.keras.layers.Dense(vocab_size)
21 # '''TODO: DENSE LAYER HERE'''
22 ])
24 return model

File ~/dev/introtodeeplearning/.venv/lib64/python3.12/site-packages/keras/src/layers/core/embedding.py:89, in Embedding.init(self, input_dim, output_dim, embeddings_initializer, embeddings_regularizer, embeddings_constraint, mask_zero, lora_rank, **kwargs)
85 if input_length is not None:
86 warnings.warn(
87 "Argument input_length is deprecated. Just remove it."
88 )
---> 89 super().init(**kwargs)
90 self.input_dim = input_dim
91 self.output_dim = output_dim

File ~/dev/introtodeeplearning/.venv/lib64/python3.12/site-packages/keras/src/layers/layer.py:263, in Layer.init(self, activity_regularizer, trainable, dtype, autocast, name, **kwargs)
261 self._input_shape_arg = input_shape_arg
262 if kwargs:
--> 263 raise ValueError(
264 "Unrecognized keyword arguments "
265 f"passed to {self.class.name}: {kwargs}"
266 )
268 self.built = False
269 self.autocast = autocast

ValueError: Unrecognized keyword arguments passed to Embedding: {'batch_input_shape': [32, None]}"
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions