Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
d = {
'Name': ['Bob', 'John', 'Alice'],
'Age': [25, 41, 30],
'Result': [1.2, 0.5, 0.3],
'Ok': [True, False, True],
}
df = pd.DataFrame(data=d)
print()
print('------ test 1 ------')
print(df)
print()
print('first row')
print(df.iloc[0])
d = {
'Age': [25, 41, 30],
'Result': [1.2, 0.5, 0.3],
'Ok': [True, False, True],
}
df = pd.DataFrame(data=d)
print()
print('------ test 2 ------')
print(df)
print()
print('first row')
print(df.iloc[0])
d = {
'Age': [25, 41, 30],
'Result': [1.2, 0.5, 0.3],
}
df = pd.DataFrame(data=d)
print()
print('------ test 3 ------')
print(df)
print()
print('first row')
print(df.iloc[0])
Issue Description
Pandas sometimes performs type conversions on returned data from the .iloc
function.
In the first two cases, a Series of object is returned. In the last case pandas decided to promote all values to float, and returns a Series of float, which is not what I want.
Program output
------ test 1 ------
Name Age Result Ok
0 Bob 25 1.2 True
1 John 41 0.5 False
2 Alice 30 0.3 True
first row
Name Bob
Age 25
Result 1.2
Ok True
Name: 0, dtype: object
------ test 2 ------
Age Result Ok
0 25 1.2 True
1 41 0.5 False
2 30 0.3 True
first row
Age 25
Result 1.2
Ok True
Name: 0, dtype: object
------ test 3 ------
Age Result
0 25 1.2
1 41 0.5
2 30 0.3
first row
Age 25.0
Result 1.2
Name: 0, dtype: float64
- To me, it is undesirable, in any circumstance, for pandas to apply type conversions on returned data. I realize this conversion is probably there for historical or performance reasons, and may not be changed.
- At a minimum, the documentation should mention exactly what circumstances a type conversion will occur. The .iloc documentation makes no mention of what will occur when a DataFrame containing heterogeneous data is indexed via
.iloc
For completeness, there is a similar bug logged long ago. #5256
Expected Behavior
- My preference is to never perform type conversions. I realize changing this behavior could break some existing code that depends on such a conversion.
- My second recommendation is to update the documentation to describe exactly when and what data conversions will be performed by pandas. At a minimum there should be a 'warning' or 'note' about the type conversions.
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.12.10
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : Intel64 Family 6 Model 154 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 2.2.3
numpy : 2.2.6
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.1.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : 3.10.3
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None