-
-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
Copy pathQuadrotor.py
87 lines (69 loc) · 2.7 KB
/
Quadrotor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Class for plotting a quadrotor
Author: Daniel Ingram (daniel-s-ingram)
"""
from math import cos, sin
import numpy as np
import matplotlib.pyplot as plt
class Quadrotor():
def __init__(self, x=0, y=0, z=0, roll=0, pitch=0, yaw=0, size=0.25, show_animation=True):
self.p1 = np.array([size / 2, 0, 0, 1]).T
self.p2 = np.array([-size / 2, 0, 0, 1]).T
self.p3 = np.array([0, size / 2, 0, 1]).T
self.p4 = np.array([0, -size / 2, 0, 1]).T
self.x_data = []
self.y_data = []
self.z_data = []
self.show_animation = show_animation
if self.show_animation:
plt.ion()
fig = plt.figure()
# for stopping simulation with the esc key.
fig.canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
self.ax = fig.add_subplot(111, projection='3d')
self.update_pose(x, y, z, roll, pitch, yaw)
def update_pose(self, x, y, z, roll, pitch, yaw):
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.x_data.append(x)
self.y_data.append(y)
self.z_data.append(z)
if self.show_animation:
self.plot()
def transformation_matrix(self):
x = self.x
y = self.y
z = self.z
roll = self.roll
pitch = self.pitch
yaw = self.yaw
return np.array(
[[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll), x],
[sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch)
* sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll), y],
[-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(roll), z]
])
def plot(self): # pragma: no cover
T = self.transformation_matrix()
p1_t = np.matmul(T, self.p1)
p2_t = np.matmul(T, self.p2)
p3_t = np.matmul(T, self.p3)
p4_t = np.matmul(T, self.p4)
plt.cla()
self.ax.plot([p1_t[0], p2_t[0], p3_t[0], p4_t[0]],
[p1_t[1], p2_t[1], p3_t[1], p4_t[1]],
[p1_t[2], p2_t[2], p3_t[2], p4_t[2]], 'k.')
self.ax.plot([p1_t[0], p2_t[0]], [p1_t[1], p2_t[1]],
[p1_t[2], p2_t[2]], 'r-')
self.ax.plot([p3_t[0], p4_t[0]], [p3_t[1], p4_t[1]],
[p3_t[2], p4_t[2]], 'r-')
self.ax.plot(self.x_data, self.y_data, self.z_data, 'b:')
plt.xlim(-5, 5)
plt.ylim(-5, 5)
self.ax.set_zlim(0, 10)
plt.pause(0.001)