-
-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
Copy pathdynamic_movement_primitives.py
260 lines (191 loc) · 8.31 KB
/
dynamic_movement_primitives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
Author: Jonathan Schwartz (github.com/SchwartzCode)
This code provides a simple implementation of Dynamic Movement
Primitives, which is an approach to learning curves by modelling
them as a weighted sum of gaussian distributions. This approach
can be used to dampen noise in a curve, and can also be used to
stretch a curve by adjusting its start and end points.
More information on Dynamic Movement Primitives available at:
https://arxiv.org/abs/2102.03861
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2013.00138/full
"""
from matplotlib import pyplot as plt
import numpy as np
class DMP:
def __init__(self, training_data, data_period, K=156.25, B=25):
"""
Arguments:
training_data - input data of form [N, dim]
data_period - amount of time training data covers
K and B - spring and damper constants to define
DMP behavior
"""
self.K = K # virtual spring constant
self.B = B # virtual damper coefficient
self.timesteps = training_data.shape[0]
self.dt = data_period / self.timesteps
self.weights = None # weights used to generate DMP trajectories
self.T_orig = data_period
self.training_data = training_data
self.find_basis_functions_weights(training_data, data_period)
def find_basis_functions_weights(self, training_data, data_period,
num_weights=10):
"""
Arguments:
data [(steps x spacial dim) np array] - data to replicate with DMP
data_period [float] - time duration of data
"""
if not isinstance(training_data, np.ndarray):
print("Warning: you should input training data as an np.ndarray")
elif training_data.shape[0] < training_data.shape[1]:
print("Warning: you probably need to transpose your training data")
dt = data_period / len(training_data)
init_state = training_data[0]
goal_state = training_data[-1]
# means (C) and std devs (H) of gaussian basis functions
C = np.linspace(0, 1, num_weights)
H = (0.65*(1./(num_weights-1))**2)
for dim, _ in enumerate(training_data[0]):
dimension_data = training_data[:, dim]
q0 = init_state[dim]
g = goal_state[dim]
q = q0
qd_last = 0
phi_vals = []
f_vals = []
for i, _ in enumerate(dimension_data):
if i + 1 == len(dimension_data):
qd = 0
else:
qd = (dimension_data[i+1] - dimension_data[i]) / dt
phi = [np.exp(-0.5 * ((i * dt / data_period) - c)**2 / H)
for c in C]
phi = phi/np.sum(phi)
qdd = (qd - qd_last)/dt
f = (qdd * data_period**2 - self.K * (g - q) + self.B * qd
* data_period) / (g - q0)
phi_vals.append(phi)
f_vals.append(f)
qd_last = qd
q += qd * dt
phi_vals = np.asarray(phi_vals)
f_vals = np.asarray(f_vals)
w = np.linalg.lstsq(phi_vals, f_vals, rcond=None)
if self.weights is None:
self.weights = np.asarray(w[0])
else:
self.weights = np.vstack([self.weights, w[0]])
def recreate_trajectory(self, init_state, goal_state, T):
"""
init_state - initial state/position
goal_state - goal state/position
T - amount of time to travel q0 -> g
"""
nrBasis = len(self.weights[0]) # number of gaussian basis functions
# means (C) and std devs (H) of gaussian basis functions
C = np.linspace(0, 1, nrBasis)
H = (0.65*(1./(nrBasis-1))**2)
# initialize virtual system
time = 0
q = init_state
dimensions = self.weights.shape[0]
qd = np.zeros(dimensions)
positions = np.array([])
for k in range(self.timesteps):
time = time + self.dt
qdd = np.zeros(dimensions)
for dim in range(dimensions):
if time <= T:
phi = [np.exp(-0.5 * ((time / T) - c)**2 / H) for c in C]
phi = phi / np.sum(phi)
f = np.dot(phi, self.weights[dim])
else:
f = 0
# simulate dynamics
qdd[dim] = (self.K*(goal_state[dim] - q[dim])/T**2
- self.B*qd[dim]/T
+ (goal_state[dim] - init_state[dim])*f/T**2)
qd = qd + qdd * self.dt
q = q + qd * self.dt
if positions.size == 0:
positions = q
else:
positions = np.vstack([positions, q])
t = np.arange(0, self.timesteps * self.dt, self.dt)
return t, positions
@staticmethod
def dist_between(p1, p2):
return np.linalg.norm(p1 - p2)
def view_trajectory(self, path, title=None, demo=False):
path = np.asarray(path)
plt.cla()
plt.plot(self.training_data[:, 0], self.training_data[:, 1],
label="Training Data")
plt.plot(path[:, 0], path[:, 1],
linewidth=2, label="DMP Approximation")
plt.xlabel("X Position")
plt.ylabel("Y Position")
plt.legend()
if title is not None:
plt.title(title)
if demo:
plt.xlim([-0.5, 5])
plt.ylim([-2, 2])
plt.draw()
plt.pause(0.02)
else:
plt.show()
def show_DMP_purpose(self):
"""
This function conveys the purpose of DMPs:
to capture a trajectory and be able to stretch
and squeeze it in terms of start and stop position
or time
"""
q0_orig = self.training_data[0]
g_orig = self.training_data[-1]
T_orig = self.T_orig
data_range = (np.amax(self.training_data[:, 0])
- np.amin(self.training_data[:, 0])) / 4
q0_right = q0_orig + np.array([data_range, 0])
q0_up = q0_orig + np.array([0, data_range/2])
g_left = g_orig - np.array([data_range, 0])
g_down = g_orig - np.array([0, data_range/2])
q0_vals = np.vstack([np.linspace(q0_orig, q0_right, 20),
np.linspace(q0_orig, q0_up, 20)])
g_vals = np.vstack([np.linspace(g_orig, g_left, 20),
np.linspace(g_orig, g_down, 20)])
T_vals = np.linspace(T_orig, 2*T_orig, 20)
for new_q0_value in q0_vals:
plot_title = (f"Initial Position = [{round(new_q0_value[0], 2)},"
f" {round(new_q0_value[1], 2)}]")
_, path = self.recreate_trajectory(new_q0_value, g_orig, T_orig)
self.view_trajectory(path, title=plot_title, demo=True)
for new_g_value in g_vals:
plot_title = (f"Goal Position = [{round(new_g_value[0], 2)},"
f" {round(new_g_value[1], 2)}]")
_, path = self.recreate_trajectory(q0_orig, new_g_value, T_orig)
self.view_trajectory(path, title=plot_title, demo=True)
for new_T_value in T_vals:
plot_title = f"Period = {round(new_T_value, 2)} [sec]"
_, path = self.recreate_trajectory(q0_orig, g_orig, new_T_value)
self.view_trajectory(path, title=plot_title, demo=True)
def example_DMP():
"""
Creates a noisy trajectory, fits weights to it, and then adjusts the
trajectory by moving its start position, goal position, or period
"""
t = np.arange(0, 3*np.pi/2, 0.01)
t1 = np.arange(3*np.pi/2, 2*np.pi, 0.01)[:-1]
t2 = np.arange(0, np.pi/2, 0.01)[:-1]
t3 = np.arange(np.pi, 3*np.pi/2, 0.01)
data_x = t + 0.02*np.random.rand(t.shape[0])
data_y = np.concatenate([np.cos(t1) + 0.1*np.random.rand(t1.shape[0]),
np.cos(t2) + 0.1*np.random.rand(t2.shape[0]),
np.sin(t3) + 0.1*np.random.rand(t3.shape[0])])
training_data = np.vstack([data_x, data_y]).T
period = 3*np.pi/2
DMP_controller = DMP(training_data, period)
DMP_controller.show_DMP_purpose()
if __name__ == '__main__':
example_DMP()