-
-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
Copy pathcar.py
113 lines (78 loc) · 2.89 KB
/
car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
Car model for Hybrid A* path planning
author: Zheng Zh (@Zhengzh)
"""
import sys
import pathlib
root_dir = pathlib.Path(__file__).parent.parent.parent
sys.path.append(str(root_dir))
from math import cos, sin, tan, pi
import matplotlib.pyplot as plt
import numpy as np
from utils.angle import rot_mat_2d
WB = 3.0 # rear to front wheel
W = 2.0 # width of car
LF = 3.3 # distance from rear to vehicle front end
LB = 1.0 # distance from rear to vehicle back end
MAX_STEER = 0.6 # [rad] maximum steering angle
BUBBLE_DIST = (LF - LB) / 2.0 # distance from rear to center of vehicle.
BUBBLE_R = np.hypot((LF + LB) / 2.0, W / 2.0) # bubble radius
# vehicle rectangle vertices
VRX = [LF, LF, -LB, -LB, LF]
VRY = [W / 2, -W / 2, -W / 2, W / 2, W / 2]
def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree):
for i_x, i_y, i_yaw in zip(x_list, y_list, yaw_list):
cx = i_x + BUBBLE_DIST * cos(i_yaw)
cy = i_y + BUBBLE_DIST * sin(i_yaw)
ids = kd_tree.query_ball_point([cx, cy], BUBBLE_R)
if not ids:
continue
if not rectangle_check(i_x, i_y, i_yaw,
[ox[i] for i in ids], [oy[i] for i in ids]):
return False # collision
return True # no collision
def rectangle_check(x, y, yaw, ox, oy):
# transform obstacles to base link frame
rot = rot_mat_2d(yaw)
for iox, ioy in zip(ox, oy):
tx = iox - x
ty = ioy - y
converted_xy = np.stack([tx, ty]).T @ rot
rx, ry = converted_xy[0], converted_xy[1]
if not (rx > LF or rx < -LB or ry > W / 2.0 or ry < -W / 2.0):
return False # collision
return True # no collision
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
"""Plot arrow."""
if not isinstance(x, float):
for (i_x, i_y, i_yaw) in zip(x, y, yaw):
plot_arrow(i_x, i_y, i_yaw)
else:
plt.arrow(x, y, length * cos(yaw), length * sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width, alpha=0.4)
def plot_car(x, y, yaw):
car_color = '-k'
c, s = cos(yaw), sin(yaw)
rot = rot_mat_2d(-yaw)
car_outline_x, car_outline_y = [], []
for rx, ry in zip(VRX, VRY):
converted_xy = np.stack([rx, ry]).T @ rot
car_outline_x.append(converted_xy[0]+x)
car_outline_y.append(converted_xy[1]+y)
arrow_x, arrow_y, arrow_yaw = c * 1.5 + x, s * 1.5 + y, yaw
plot_arrow(arrow_x, arrow_y, arrow_yaw)
plt.plot(car_outline_x, car_outline_y, car_color)
def pi_2_pi(angle):
return (angle + pi) % (2 * pi) - pi
def move(x, y, yaw, distance, steer, L=WB):
x += distance * cos(yaw)
y += distance * sin(yaw)
yaw = pi_2_pi(yaw + distance * tan(steer) / L) # distance/2
return x, y, yaw
def main():
x, y, yaw = 0., 0., 1.
plt.axis('equal')
plot_car(x, y, yaw)
plt.show()
if __name__ == '__main__':
main()