-
-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
Copy pathSpaceTimeAStar.py
241 lines (199 loc) · 7.78 KB
/
SpaceTimeAStar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
Space-time A* Algorithm
This script demonstrates the Space-time A* algorithm for path planning in a grid world with moving obstacles.
This algorithm is different from normal 2D A* in one key way - the cost (often notated as g(n)) is
the number of time steps it took to get to a given node, instead of the number of cells it has
traversed. This ensures the path is time-optimal, while respecting any dynamic obstacles in the environment.
Reference: https://www.davidsilver.uk/wp-content/uploads/2020/03/coop-path-AIWisdom.pdf
"""
import numpy as np
import matplotlib.pyplot as plt
from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import (
Grid,
ObstacleArrangement,
Position,
)
import heapq
from collections.abc import Generator
import random
from dataclasses import dataclass
from functools import total_ordering
import time
# Seed randomness for reproducibility
RANDOM_SEED = 50
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
@dataclass()
# Note: Total_ordering is used instead of adding `order=True` to the @dataclass decorator because
# this class needs to override the __lt__ and __eq__ methods to ignore parent_index. Parent
# index is just used to track the path found by the algorithm, and has no effect on the quality
# of a node.
@total_ordering
class Node:
position: Position
time: int
heuristic: int
parent_index: int
"""
This is what is used to drive node expansion. The node with the lowest value is expanded next.
This comparison prioritizes the node with the lowest cost-to-come (self.time) + cost-to-go (self.heuristic)
"""
def __lt__(self, other: object):
if not isinstance(other, Node):
return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}")
return (self.time + self.heuristic) < (other.time + other.heuristic)
"""
Note: cost and heuristic are not included in eq or hash, since they will always be the same
for a given (position, time) pair. Including either cost or heuristic would be redundant.
"""
def __eq__(self, other: object):
if not isinstance(other, Node):
return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}")
return self.position == other.position and self.time == other.time
def __hash__(self):
return hash((self.position, self.time))
class NodePath:
path: list[Node]
positions_at_time: dict[int, Position] = {}
def __init__(self, path: list[Node]):
self.path = path
for node in path:
self.positions_at_time[node.time] = node.position
"""
Get the position of the path at a given time
"""
def get_position(self, time: int) -> Position | None:
return self.positions_at_time.get(time)
"""
Time stamp of the last node in the path
"""
def goal_reached_time(self) -> int:
return self.path[-1].time
def __repr__(self):
repr_string = ""
for i, node in enumerate(self.path):
repr_string += f"{i}: {node}\n"
return repr_string
class SpaceTimeAStar:
grid: Grid
start: Position
goal: Position
# Used to evaluate solutions
expanded_node_count: int = -1
def __init__(self, grid: Grid, start: Position, goal: Position):
self.grid = grid
self.start = start
self.goal = goal
def plan(self, verbose: bool = False) -> NodePath:
open_set: list[Node] = []
heapq.heappush(
open_set, Node(self.start, 0, self.calculate_heuristic(self.start), -1)
)
expanded_list: list[Node] = []
expanded_set: set[Node] = set()
while open_set:
expanded_node: Node = heapq.heappop(open_set)
if verbose:
print("Expanded node:", expanded_node)
if expanded_node.time + 1 >= self.grid.time_limit:
if verbose:
print(f"\tSkipping node that is past time limit: {expanded_node}")
continue
if expanded_node.position == self.goal:
print(f"Found path to goal after {len(expanded_list)} expansions")
path = []
path_walker: Node = expanded_node
while True:
path.append(path_walker)
if path_walker.parent_index == -1:
break
path_walker = expanded_list[path_walker.parent_index]
# reverse path so it goes start -> goal
path.reverse()
self.expanded_node_count = len(expanded_set)
return NodePath(path)
expanded_idx = len(expanded_list)
expanded_list.append(expanded_node)
expanded_set.add(expanded_node)
for child in self.generate_successors(expanded_node, expanded_idx, verbose, expanded_set):
heapq.heappush(open_set, child)
raise Exception("No path found")
"""
Generate possible successors of the provided `parent_node`
"""
def generate_successors(
self, parent_node: Node, parent_node_idx: int, verbose: bool, expanded_set: set[Node]
) -> Generator[Node, None, None]:
diffs = [
Position(0, 0),
Position(1, 0),
Position(-1, 0),
Position(0, 1),
Position(0, -1),
]
for diff in diffs:
new_pos = parent_node.position + diff
new_node = Node(
new_pos,
parent_node.time + 1,
self.calculate_heuristic(new_pos),
parent_node_idx,
)
if new_node in expanded_set:
continue
if self.grid.valid_position(new_pos, parent_node.time + 1):
if verbose:
print("\tNew successor node: ", new_node)
yield new_node
def calculate_heuristic(self, position) -> int:
diff = self.goal - position
return abs(diff.x) + abs(diff.y)
show_animation = True
verbose = False
def main():
start = Position(1, 5)
goal = Position(19, 19)
grid_side_length = 21
start_time = time.time()
grid = Grid(
np.array([grid_side_length, grid_side_length]),
num_obstacles=40,
obstacle_avoid_points=[start, goal],
obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1,
)
planner = SpaceTimeAStar(grid, start, goal)
path = planner.plan(verbose)
runtime = time.time() - start_time
print(f"Planning took: {runtime:.5f} seconds")
if verbose:
print(f"Path: {path}")
if not show_animation:
return
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(
autoscale_on=False,
xlim=(0, grid.grid_size[0] - 1),
ylim=(0, grid.grid_size[1] - 1),
)
ax.set_aspect("equal")
ax.grid()
ax.set_xticks(np.arange(0, grid_side_length, 1))
ax.set_yticks(np.arange(0, grid_side_length, 1))
(start_and_goal,) = ax.plot([], [], "mD", ms=15, label="Start and Goal")
start_and_goal.set_data([start.x, goal.x], [start.y, goal.y])
(obs_points,) = ax.plot([], [], "ro", ms=15, label="Obstacles")
(path_points,) = ax.plot([], [], "bo", ms=10, label="Path Found")
ax.legend(bbox_to_anchor=(1.05, 1))
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
"key_release_event", lambda event: [exit(0) if event.key == "escape" else None]
)
for i in range(0, path.goal_reached_time()):
obs_positions = grid.get_obstacle_positions_at_time(i)
obs_points.set_data(obs_positions[0], obs_positions[1])
path_position = path.get_position(i)
path_points.set_data([path_position.x], [path_position.y])
plt.pause(0.2)
plt.show()
if __name__ == "__main__":
main()