-
-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
Copy pathplot.py
234 lines (194 loc) · 8.49 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
Matplotlib based plotting utilities
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import art3d
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d.proj3d import proj_transform
from mpl_toolkits.mplot3d import Axes3D
from utils.angle import rot_mat_2d
def plot_covariance_ellipse(x, y, cov, chi2=3.0, color="-r", ax=None):
"""
This function plots an ellipse that represents a covariance matrix. The ellipse is centered at (x, y) and its shape, size and rotation are determined by the covariance matrix.
Parameters:
x : (float) The x-coordinate of the center of the ellipse.
y : (float) The y-coordinate of the center of the ellipse.
cov : (numpy.ndarray) A 2x2 covariance matrix that determines the shape, size, and rotation of the ellipse.
chi2 : (float, optional) A scalar value that scales the ellipse size. This value is typically set based on chi-squared distribution quantiles to achieve certain confidence levels (e.g., 3.0 corresponds to ~95% confidence for a 2D Gaussian). Defaults to 3.0.
color : (str, optional) The color and line style of the ellipse plot, following matplotlib conventions. Defaults to "-r" (a red solid line).
ax : (matplotlib.axes.Axes, optional) The Axes object to draw the ellipse on. If None (default), a new figure and axes are created.
Returns:
None. This function plots the covariance ellipse on the specified axes.
"""
eig_val, eig_vec = np.linalg.eig(cov)
if eig_val[0] >= eig_val[1]:
big_ind = 0
small_ind = 1
else:
big_ind = 1
small_ind = 0
a = math.sqrt(chi2 * eig_val[big_ind])
b = math.sqrt(chi2 * eig_val[small_ind])
angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind])
plot_ellipse(x, y, a, b, angle, color=color, ax=ax)
def plot_ellipse(x, y, a, b, angle, color="-r", ax=None, **kwargs):
"""
This function plots an ellipse based on the given parameters.
Parameters
----------
x : (float) The x-coordinate of the center of the ellipse.
y : (float) The y-coordinate of the center of the ellipse.
a : (float) The length of the semi-major axis of the ellipse.
b : (float) The length of the semi-minor axis of the ellipse.
angle : (float) The rotation angle of the ellipse, in radians.
color : (str, optional) The color and line style of the ellipse plot, following matplotlib conventions. Defaults to "-r" (a red solid line).
ax : (matplotlib.axes.Axes, optional) The Axes object to draw the ellipse on. If None (default), a new figure and axes are created.
**kwargs: Additional keyword arguments to pass to plt.plot or ax.plot.
Returns
---------
None. This function plots the ellipse based on the specified parameters.
"""
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
px = [a * math.cos(it) for it in t]
py = [b * math.sin(it) for it in t]
fx = rot_mat_2d(angle) @ (np.array([px, py]))
px = np.array(fx[0, :] + x).flatten()
py = np.array(fx[1, :] + y).flatten()
if ax is None:
plt.plot(px, py, color, **kwargs)
else:
ax.plot(px, py, color, **kwargs)
def plot_arrow(x, y, yaw, arrow_length=1.0,
origin_point_plot_style="xr",
head_width=0.1, fc="r", ec="k", **kwargs):
"""
Plot an arrow or arrows based on 2D state (x, y, yaw)
All optional settings of matplotlib.pyplot.arrow can be used.
- matplotlib.pyplot.arrow:
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.arrow.html
Parameters
----------
x : a float or array_like
a value or a list of arrow origin x position.
y : a float or array_like
a value or a list of arrow origin y position.
yaw : a float or array_like
a value or a list of arrow yaw angle (orientation).
arrow_length : a float (optional)
arrow length. default is 1.0
origin_point_plot_style : str (optional)
origin point plot style. If None, not plotting.
head_width : a float (optional)
arrow head width. default is 0.1
fc : string (optional)
face color
ec : string (optional)
edge color
"""
if not isinstance(x, float):
for (i_x, i_y, i_yaw) in zip(x, y, yaw):
plot_arrow(i_x, i_y, i_yaw, head_width=head_width,
fc=fc, ec=ec, **kwargs)
else:
plt.arrow(x, y,
arrow_length * math.cos(yaw),
arrow_length * math.sin(yaw),
head_width=head_width,
fc=fc, ec=ec,
**kwargs)
if origin_point_plot_style is not None:
plt.plot(x, y, origin_point_plot_style)
def plot_curvature(x_list, y_list, heading_list, curvature,
k=0.01, c="-c", label="Curvature"):
"""
Plot curvature on 2D path. This plot is a line from the original path,
the lateral distance from the original path shows curvature magnitude.
Left turning shows right side plot, right turning shows left side plot.
For straight path, the curvature plot will be on the path, because
curvature is 0 on the straight path.
Parameters
----------
x_list : array_like
x position list of the path
y_list : array_like
y position list of the path
heading_list : array_like
heading list of the path
curvature : array_like
curvature list of the path
k : float
curvature scale factor to calculate distance from the original path
c : string
color of the plot
label : string
label of the plot
"""
cx = [x + d * k * np.cos(yaw - np.pi / 2.0) for x, y, yaw, d in
zip(x_list, y_list, heading_list, curvature)]
cy = [y + d * k * np.sin(yaw - np.pi / 2.0) for x, y, yaw, d in
zip(x_list, y_list, heading_list, curvature)]
plt.plot(cx, cy, c, label=label)
for ix, iy, icx, icy in zip(x_list, y_list, cx, cy):
plt.plot([ix, icx], [iy, icy], c)
class Arrow3D(FancyArrowPatch):
def __init__(self, x, y, z, dx, dy, dz, *args, **kwargs):
super().__init__((0, 0), (0, 0), *args, **kwargs)
self._xyz = (x, y, z)
self._dxdydz = (dx, dy, dz)
def draw(self, renderer):
x1, y1, z1 = self._xyz
dx, dy, dz = self._dxdydz
x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz)
xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
super().draw(renderer)
def do_3d_projection(self, renderer=None):
x1, y1, z1 = self._xyz
dx, dy, dz = self._dxdydz
x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz)
xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
return np.min(zs)
def _arrow3D(ax, x, y, z, dx, dy, dz, *args, **kwargs):
'''Add an 3d arrow to an `Axes3D` instance.'''
arrow = Arrow3D(x, y, z, dx, dy, dz, *args, **kwargs)
ax.add_artist(arrow)
def plot_3d_vector_arrow(ax, p1, p2):
setattr(Axes3D, 'arrow3D', _arrow3D)
ax.arrow3D(p1[0], p1[1], p1[2],
p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2],
mutation_scale=20,
arrowstyle="-|>",
)
def plot_triangle(p1, p2, p3, ax):
ax.add_collection3d(art3d.Poly3DCollection([[p1, p2, p3]], color='b'))
def set_equal_3d_axis(ax, x_lims, y_lims, z_lims):
"""Helper function to set equal axis
Args:
ax (Axes3DSubplot): matplotlib 3D axis, created by
`ax = fig.add_subplot(projection='3d')`
x_lims (np.array): array containing min and max value of x
y_lims (np.array): array containing min and max value of y
z_lims (np.array): array containing min and max value of z
"""
x_lims = np.asarray(x_lims)
y_lims = np.asarray(y_lims)
z_lims = np.asarray(z_lims)
# compute max required range
max_range = np.array([x_lims.max() - x_lims.min(),
y_lims.max() - y_lims.min(),
z_lims.max() - z_lims.min()]).max() / 2.0
# compute mid-point along each axis
mid_x = (x_lims.max() + x_lims.min()) * 0.5
mid_y = (y_lims.max() + y_lims.min()) * 0.5
mid_z = (z_lims.max() + z_lims.min()) * 0.5
# set limits to axis
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
if __name__ == '__main__':
plot_ellipse(0, 0, 1, 2, np.deg2rad(15))
plt.axis('equal')
plt.show()