This repository was archived by the owner on Feb 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathrun_segm_slic_classif_graphcut.py
873 lines (756 loc) · 32.4 KB
/
run_segm_slic_classif_graphcut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
"""
Run supervised segmentation experiment with superpixels and training examples
1) train classifier on annotated images with some statistic - LPO
2) segment new images in specified folder
Segmentation pipeline:
1. segment SLIC super-pixels
2. compute features (color and texture)
3. train classifier on training examples
4. segment new images
The input is csv file with training images and related segmentation.
The output is set of segmented images.
.. note:: there are a few constants to that have an impact on the experiment,
see them bellow with explanation for each of them.
Sample usage::
python run_segm_slic_classif_graphcut.py \
-l data-images/drosophila_ovary_slice/list_imgs-annot-struct.csv \
-i "data-images/drosophila_ovary_slice/image/*.jpg" \
--path_config experiments_segmentation/sample_config.yml \
-o results -n Ovary --img_type 2d_split --visual
Copyright (C) 2016-2018 Jiri Borovec <jiri.borovec@fel.cvut.cz>
"""
import gc
import glob
import logging
import os
import sys
import time
from functools import partial
import matplotlib
from imsegm.utilities import ImageDimensionError
if os.environ.get('DISPLAY', '') == '':
print('No display found. Using non-interactive Agg backend.')
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import skimage.color as sk_color
from PIL import Image
# from llvmpy._api.llvm.CmpInst import FCMP_OLE
from skimage import segmentation
from sklearn import metrics
sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root
from run_segm_slic_model_graphcut import (
arg_parse_params,
get_idx_name,
load_image,
parse_imgs_idx_path,
write_skip_file,
)
import imsegm.classification as seg_clf
import imsegm.descriptors as seg_fts
import imsegm.graph_cuts as seg_gc
import imsegm.labeling as seg_label
import imsegm.pipelines as seg_pipe
import imsegm.superpixels as seg_spx
import imsegm.utilities.data_io as tl_data
import imsegm.utilities.drawing as tl_visu
import imsegm.utilities.experiments as tl_expt
NAME_EXPERIMENT = 'experiment_segm-Supervised'
NB_WORKERS = tl_expt.get_nb_workers(0.9)
TYPES_LOAD_IMAGE = ['2d_rgb', '2d_split']
NAME_FIG_LABEL_HISTO = 'fig_histogram_annot_segments.png'
NAME_CSV_SEGM_STAT_SLIC_ANNOT = 'statistic_segm_slic_annot.csv'
NAME_CSV_SEGM_STAT_RESULT_LPO = 'statistic_segm_L-%i-O.csv'
NAME_CSV_SEGM_STAT_RESULT_LPO_GC = 'statistic_segm_L-%i-O_gc.csv'
NAME_CSV_SEGM_STAT_RESULTS = 'statistic_segm_results.csv'
NAME_DUMP_TRAIN_DATA = 'dump_training_data.npz'
# setting experiment sub-folders
FOLDER_IMAGE = 'images'
FOLDER_ANNOT = 'annotations'
FOLDER_SLIC = 'slic'
FOLDER_SLIC_ANNOT = 'annot_slic'
FOLDER_TRAIN = 'segmentation_trained'
SUFFIX_VISUAL = '___visual'
FOLDER_TRAIN_VISU = FOLDER_TRAIN + SUFFIX_VISUAL
FOLDER_LPO = 'segmentation_leave-P-out'
FOLDER_LPO_VISU = FOLDER_LPO + SUFFIX_VISUAL
LIST_FOLDERS_BASE = (FOLDER_IMAGE, FOLDER_ANNOT, FOLDER_SLIC, FOLDER_SLIC_ANNOT, FOLDER_TRAIN, FOLDER_LPO)
LIST_FOLDERS_DEBUG = (FOLDER_TRAIN_VISU, FOLDER_LPO_VISU)
# unique experiment means adding timestemp on the end of folder name
EACH_UNIQUE_EXPERIMENT = False
# showing some intermediate debug images from segmentation
SHOW_DEBUG_IMAGES = True
# relabel annotation such that labels are in sequence no gaps in between them
ANNOT_RELABEL_SEQUENCE = False
# whether skip loading config from previous fun
FORCE_RELOAD = False
# even you have dumped data from previous time, all wil be recomputed
FORCE_RECOMP_DATA = False
# even you have saved classif. data from previous time, all wil be retrained
FORCE_RETRAIN_CLASSIF = False
# ration of fold size for LPO for hyper-parameter search
CROSS_VAL_LEAVE_OUT_SEARCH = 0.2
# ration of fold size for LPO for evaluation
CROSS_VAL_LEAVE_OUT_EVAL = 0.1
# run prediction on training data, should be overfiting
RUN_TRAIN_PREDICT = False
FEATURES_SET_COLOR = {'color': ('mean', 'std', 'energy')}
FEATURES_SET_TEXTURE = {'tLM': ('mean', 'std', 'energy')}
FEATURES_SET_ALL = {
'color': ('mean', 'std', 'median'),
'tLM': ('mean', 'std', 'energy', 'meanGrad'),
}
FEATURES_SET_MIN = {
'color': ('mean', 'std', 'energy'),
'tLM_short': ('mean', ),
}
FEATURES_SET_MIX = {
'color': ('mean', 'std', 'energy', 'median'),
'tLM': ('mean', 'std'),
}
# Default parameter configuration
SEGM_PARAMS = {
'name': 'ovary',
'nb_classes': None,
'img_type': '2d_split',
'slic_size': 35,
'slic_regul': 0.3,
# 'spacing': (12, 1, 1),
'features': FEATURES_SET_MIN,
'label_purity': 0.95, # training only superpixels with 0.9 label purity
'balance': 'unique',
'pca_coef': None,
'classif': 'RandForest', # 'GradBoost'
'nb_classif_search': 50,
'gc_regul': 5.0,
'gc_edge_type': 'model',
'gc_use_trans': False,
}
PATH_IMAGES = os.path.join(tl_data.update_path('data-images'), 'drosophila_ovary_slice')
PATH_RESULTS = tl_data.update_path('results', absolute=True)
SEGM_PARAMS.update({
'path_train_list': os.path.join(PATH_IMAGES, 'list_imgs-annot-struct.csv'),
'path_predict_imgs': os.path.join(PATH_IMAGES, 'image', 'insitu43*.tif'),
# 'path_predict_imgs': '',
'path_out': PATH_RESULTS,
})
def visu_histogram_labels(params, dict_label_hist, fig_name=NAME_FIG_LABEL_HISTO):
""" draw histogram of superpixel-pixel annotation purity for each class
:param {...} params:
:param {...} dict_label_hist:
:param str fig_name:
"""
fig = tl_visu.figure_annot_slic_histogram_labels(dict_label_hist, params['slic_size'], params['slic_regul'])
path_fig = os.path.join(params['path_exp'], fig_name)
fig.savefig(path_fig)
plt.close(fig)
def use_rgb_image(img, clr='rgb'):
# clr = params.get('clr_space', 'rgb').lower()
if img.ndim == 3 and img.shape[-1] in (3, 4):
img_rgb = tl_data.convert_img_color_to_rgb(img, clr)
elif img.ndim == 2:
img_rgb = sk_color.gray2rgb(img)
else:
img_rgb = img.copy()
return img_rgb
def load_image_annot_compute_features_labels(idx_row, params, show_debug_imgs=SHOW_DEBUG_IMAGES):
""" load image and annotation, and compute superpixel features and labels
:param (int, {...}) idx_row: row from table with paths
:param dict params: segmentation parameters
:param bool show_debug_imgs: whether show debug images
:return tuple(...):
"""
def _path_out_img(params, dir_name, name):
return os.path.join(params['path_exp'], dir_name, name + '.png')
idx, row = idx_row
idx_name = get_idx_name(idx, row['path_image'])
img = load_image(row['path_image'], params['img_type'])
annot = load_image(row['path_annot'], '2d_segm')
logging.debug('.. processing: %s', idx_name)
if img.shape[:2] != annot.shape[:2]:
raise ImageDimensionError(
'individual size of image %r and seg_pipe %r for "%s" - "%s"' %
(img.shape, annot.shape, row['path_image'], row['path_annot'])
)
if show_debug_imgs:
plt.imsave(_path_out_img(params, FOLDER_IMAGE, idx_name), img, cmap=plt.cm.gray)
plt.imsave(_path_out_img(params, FOLDER_ANNOT, idx_name), annot)
# duplicate gray band to be as rgb
# if img.ndim == 2:
# img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)
slic = seg_spx.segment_slic_img2d(img, sp_size=params['slic_size'], relative_compact=params['slic_regul'])
img = tl_data.convert_img_color_from_rgb(img, params.get('clr_space', 'rgb'))
logging.debug('computed SLIC with %i labels', slic.max())
if show_debug_imgs:
img_rgb = use_rgb_image(img)
img_slic = segmentation.mark_boundaries(img_rgb, slic, color=(1, 0, 0), mode='subpixel')
plt.imsave(_path_out_img(params, FOLDER_SLIC, idx_name), np.clip(img_slic, 0, 1))
slic_label_hist = seg_label.histogram_regions_labels_norm(slic, annot)
labels = np.argmax(slic_label_hist, axis=1)
slic_annot = labels[slic]
if show_debug_imgs:
plt.imsave(_path_out_img(params, FOLDER_SLIC_ANNOT, idx_name), np.clip(slic_annot, 0, slic_annot.max()))
features, feature_names = seg_fts.compute_selected_features_img2d(img, slic, params['features'])
return idx_name, img, annot, slic, features, labels, slic_label_hist, feature_names
def dataset_load_images_annot_compute_features(params, show_debug_imgs=SHOW_DEBUG_IMAGES):
""" for all datasets perform the following steps:
1) load image and annotation
2) compute superpixel features and labels
:param dict params: segmentation parameters
:param bool show_debug_imgs: whether show debug images
:return tuple(dict(str,ndarray) * 6, list(str)):
"""
dict_images, dict_annots = {}, {}
dict_slics, dict_features, dict_labels, dict_label_hist = {}, {}, {}, {}
feature_names = []
# compute features
df_paths = pd.read_csv(params['path_train_list'], index_col=0)
df_paths.reset_index(inplace=True)
if not all(n in df_paths.columns for n in ['path_image', 'path_annot']):
raise ValueError('missing required columns in loaded csv file')
_wrapper_load_compute = partial(
load_image_annot_compute_features_labels,
params=params,
show_debug_imgs=show_debug_imgs,
)
iterate = tl_expt.WrapExecuteSequence(
_wrapper_load_compute,
df_paths.iterrows(),
nb_workers=params['nb_workers'],
desc='extract training data',
)
for name, img, annot, slic, features, labels, label_hist, feature_names in iterate:
dict_images[name] = img
dict_annots[name] = annot
dict_slics[name] = slic
dict_features[name] = features
dict_labels[name] = labels
dict_label_hist[name] = label_hist
# gc.collect(), time.sleep(1)
return (dict_images, dict_annots, dict_slics, dict_features, dict_labels, dict_label_hist, feature_names)
def load_dump_data(path_dump_data):
""" load dumped data from previous run of experiment
:param str path_dump_data:
:return tuple(dict(str,ndarray) * 6, list(str)):
"""
logging.info('loading dumped data "%s"', path_dump_data)
# with open(os.path.join(path_out, NAME_DUMP_TRAIN_DATA), 'r') as f:
# dict_data = pickle.load(f)
npz_file = np.load(path_dump_data, allow_pickle=True)
dict_imgs = dict(npz_file['dict_images'].tolist())
dict_annot = dict(npz_file['dict_annot'].tolist())
dict_slics = dict(npz_file['dict_slics'].tolist())
dict_label_hist = dict(npz_file['dict_label_hist'].tolist())
dict_features = dict(npz_file['dict_features'].tolist())
dict_labels = dict(npz_file['dict_labels'].tolist())
feature_names = npz_file['feature_names'].tolist()
return (dict_imgs, dict_annot, dict_slics, dict_features, dict_labels, dict_label_hist, feature_names)
def save_dump_data(path_dump_data, imgs, annot, slics, features, labels, label_hist, feature_names):
"""
:param str path_dump_data:
:param dict(str,ndarray) imgs: dictionary {name: data} of images
:param dict(str,ndarray) annot: dictionary {name: data} of annotation
:param dict(str,ndarray) slics: dictionary {name: data} of superpixels
:param dict(str,ndarray) features: dictionary {name: data} of features
:param dict(str,ndarray) labels: dictionary {name: data} of lables
:param dict(str,ndarray) label_hist: dictionary {name: data} of
:param list(str) feature_names: list of feature names
"""
logging.info('save (dump) data to "%s"', path_dump_data)
np.savez_compressed(
path_dump_data,
dict_images=imgs,
dict_annot=annot,
dict_slics=slics,
dict_label_hist=label_hist,
dict_features=features,
dict_labels=labels,
feature_names=feature_names,
)
def export_draw_image_segm_contour(img, segm, path_out, name, suffix=''):
logging.debug('export draw image segmentation countours: %s', name)
fig = tl_visu.figure_image_segm_results(img, segm)
fig.savefig(os.path.join(path_out, name + suffix + '.png'))
plt.close(fig)
def segment_image(imgs_idx_path, params, classif, path_out, path_visu=None, show_debug_imgs=SHOW_DEBUG_IMAGES):
""" perform image segmentation on input image with given paramters
and trained classifier, and save results
:param (int, str) imgs_idx_path:
:param dict params: segmentation parameters
:param obj classif: trained classifier
:param str path_out: path for output
:param str path_visu: the existing patch means export also visualisation
:param bool show_debug_imgs: whether show debug images
:return tuple(str, ndarray, ndarray):
"""
idx, path_img = parse_imgs_idx_path(imgs_idx_path)
logging.debug('segmenting image: "%s"', path_img)
idx_name = get_idx_name(idx, path_img)
img = load_image(path_img, params['img_type'])
debug_visual = {} if show_debug_imgs else None
gc_regul = params['gc_regul']
if params['gc_use_trans']:
label_penalty = seg_gc.compute_pairwise_cost_from_transitions(params['label_transitions'])
gc_regul = (gc_regul * label_penalty)
segm_gc, segm_soft = seg_pipe.segment_color2d_slic_features_model_graphcut(
img,
classif,
sp_size=params['slic_size'],
sp_regul=params['slic_regul'],
dict_features=params['features'],
gc_regul=gc_regul,
gc_edge_type=params['gc_edge_type'],
debug_visual=debug_visual,
)
segm_map = np.argmax(segm_soft, axis=-1)
for segm, suffix in [(segm_gc, ''), (segm_map, '_MAP')]:
path_img = os.path.join(path_out, idx_name + suffix + '.png')
logging.debug('export segmentation: %s', path_img)
if np.max(segm) <= 1:
img_seg = Image.fromarray((segm * 255).astype(np.uint8))
else:
img_seg = Image.fromarray(segm.astype(np.uint8))
img_seg.convert('L').save(path_img)
# io.imsave(path_img, segm_gc)
path_npz = os.path.join(path_out, idx_name + '.npz')
np.savez_compressed(path_npz, segm_soft)
# plt.imsave(os.path.join(path_out, idx_name + '_rgb.png'), seg_pipe)
if params.get('visual', False) and path_visu is not None and os.path.isdir(path_visu):
export_draw_image_segm_contour(img, segm_gc, path_visu, idx_name, '_GC')
export_draw_image_segm_contour(img, segm_map, path_visu, idx_name, '_MAP')
if show_debug_imgs and debug_visual is not None:
path_fig = os.path.join(path_visu, str(idx_name) + '_debug.png')
logging.debug('exporting (debug) visualization: %s', path_fig)
fig = tl_visu.figure_segm_graphcut_debug(debug_visual)
fig.savefig(path_fig, bbox_inches='tight', pad_inches=0.1)
plt.close(fig)
gc.collect()
time.sleep(1)
return idx_name, segm_map, segm_gc
def eval_segment_with_annot(
params,
dict_annot,
dict_segm,
dict_label_hist=None,
name_csv='statistic___.csv',
drop_labels=None,
nb_workers=1,
):
""" evaluate the segmentation results according given annotation
:param dict params:
:param dict(str,ndarray) dict_annot:
:param dict(str,ndarray) dict_segm:
:param dict(str,ndarray) dict_label_hist:
:param str name_csv:
:param int nb_workers:
:return:
"""
if dict_label_hist is not None:
visu_histogram_labels(params, dict_label_hist)
if sorted(dict_annot) != sorted(dict_segm):
raise ValueError(
'mismatch in dictionary keys: \n%s \n%s' % (sorted(dict_annot.keys()), sorted(dict_segm.keys()))
)
list_annot = [dict_annot[n] for n in dict_annot]
list_segm = [dict_segm[n] for n in dict_annot]
df_stat = seg_clf.compute_stat_per_image(
list_segm, list_annot, list(dict_annot), nb_workers, drop_labels=drop_labels
)
path_csv = os.path.join(params['path_exp'], name_csv)
logging.info('STATISTIC on segm and annot (%s):', name_csv)
df_stat.to_csv(path_csv)
logging.info(
metrics.classification_report(
seg_label.convert_segms_2_list(list_segm), seg_label.convert_segms_2_list(list_annot), digits=4
)
)
logging.debug('%r', df_stat)
return df_stat
def retrain_lpo_segment_image(
list_imgs_idx_path, path_classif, path_dump, path_out, path_visu, show_debug_imgs=SHOW_DEBUG_IMAGES
):
""" load the classifier, and dumped data, subtract the image,
retrain the classif without it and do the segmentation
:param list(str) list_imgs_idx_path: path to input image
:param str path_classif: path to saved classifier
:param str path_dump: path to dumped data
:param, str path_out: path to segmentation outputs
:param bool show_debug_imgs: whether show debug images
:return tuple(str, ndarray, ndarray):
"""
dict_imgs, _, _, dict_features, dict_labels, _, _ = load_dump_data(path_dump)
dict_classif = seg_clf.load_classifier(path_classif)
classif = dict_classif['clf_pipeline']
params = dict_classif['params']
for idx, path_img in list_imgs_idx_path:
idx_name = get_idx_name(idx, path_img)
_ = dict_features.pop(idx_name, None)
_ = dict_labels.pop(idx_name, None)
if (len(dict_imgs) - len(dict_features)) != len(list_imgs_idx_path):
raise ValueError(
'subset of %i images was not dropped, training set %i from total %i' %
(len(list_imgs_idx_path), len(dict_features), len(dict_imgs))
)
features, labels, _ = seg_clf.convert_set_features_labels_2_dataset(
dict_features,
dict_labels,
balance_type=params['balance'],
drop_labels=[-1, np.nan] + params.get('drop_labels', [])
)
classif.fit(features, labels)
dict_segm, dict_segm_gc = {}, {}
for imgs_idx_path in list_imgs_idx_path:
idx_name, segm, segm_gc = segment_image(
imgs_idx_path, params, classif, path_out, path_visu, show_debug_imgs=show_debug_imgs
)
dict_segm[idx_name] = segm
dict_segm_gc[idx_name] = segm_gc
gc.collect()
time.sleep(1)
return dict_segm, dict_segm_gc
def get_summary(df, name, list_stat=('mean', 'std', 'median')):
""" from particular segmentation results extract one global summary
:param df:
:param str name:
:param [] list_stat:
:return dict(str,float):
"""
df_summary = df.describe()
cols = df.columns.tolist()
dict_state = {'name': name, 'count': len(df)}
for n in list_stat:
col_names = ['%s (%s)' % (c, n) for c in cols]
if n == 'median':
vals = df.median(axis=0).values.tolist()
else:
vals = df_summary.T[n].values.tolist()
dict_state.update(list(zip(col_names, vals)))
return dict_state
def perform_train_predictions(params, paths_img, classif, show_debug_imgs=SHOW_DEBUG_IMAGES):
logging.info('run prediction on training images...')
imgs_idx_path = list(zip(range(1, len(paths_img) + 1), paths_img))
dict_segms, dict_segms_gc = {}, {}
path_out = os.path.join(params['path_exp'], FOLDER_TRAIN)
path_visu = os.path.join(params['path_exp'], FOLDER_TRAIN_VISU)
_wrapper_segment = partial(
segment_image,
params=params,
classif=classif,
path_out=path_out,
path_visu=path_visu,
show_debug_imgs=show_debug_imgs,
)
iterate = tl_expt.WrapExecuteSequence(
_wrapper_segment,
imgs_idx_path,
nb_workers=params['nb_workers'],
desc='image segm: prediction',
)
for name, segm, segm_gc in iterate:
dict_segms[name] = segm
dict_segms_gc[name] = segm_gc
return dict_segms, dict_segms_gc
def experiment_lpo(
params, df_stat, dict_annot, idx_paths_img, path_classif, path_dump, nb_holdout, show_debug_imgs=SHOW_DEBUG_IMAGES
):
""" experiment Leave-P-samples-Out
:param dict params:
:param DF df_stat:
:param dict(str,ndarray) dict_annot:
:param list(str) paths_img:
:param str path_classif:
:param str path_dump:
:param int nb_holdout:
:param bool show_debug_imgs: whether show debug images
:return dict:
"""
logging.info('run prediction on training images as Leave-%i-Out...', nb_holdout)
dict_segms, dict_segms_gc = {}, {}
cv = seg_clf.CrossValidate(len(idx_paths_img), nb_hold_out=nb_holdout)
test_imgs_idx_path = [[idx_paths_img[i] for i in ids] for _, ids in cv]
path_out = os.path.join(params['path_exp'], FOLDER_LPO)
path_visu = os.path.join(params['path_exp'], FOLDER_LPO_VISU) \
if params.get('visual', False) else None
_wrapper_segment = partial(
retrain_lpo_segment_image,
path_classif=path_classif,
path_dump=path_dump,
path_out=path_out,
path_visu=path_visu,
show_debug_imgs=show_debug_imgs,
)
iterate = tl_expt.WrapExecuteSequence(
_wrapper_segment,
test_imgs_idx_path,
nb_workers=params['nb_workers'],
desc='experiment LPO',
)
for dict_seg, dict_seg_gc in iterate:
dict_segms.update(dict_seg)
dict_segms_gc.update(dict_seg_gc)
gc.collect()
time.sleep(1)
df = eval_segment_with_annot(
params, dict_annot, dict_segms, None, NAME_CSV_SEGM_STAT_RESULT_LPO % nb_holdout,
params.get('drop_labels', None), params['nb_workers']
)
df_stat = df_stat.append(get_summary(df, 'segm (L-%i-O)' % nb_holdout), ignore_index=True)
df = eval_segment_with_annot(
params, dict_annot, dict_segms_gc, None, NAME_CSV_SEGM_STAT_RESULT_LPO_GC % nb_holdout,
params.get('drop_labels', None), params['nb_workers']
)
df_stat = df_stat.append(get_summary(df, 'segm GC (L-%i-O)' % nb_holdout), ignore_index=True)
path_csv_stat = os.path.join(params['path_exp'], NAME_CSV_SEGM_STAT_RESULTS)
df_stat.set_index(['name']).to_csv(path_csv_stat)
return df_stat
def load_train_classifier(params, features, labels, feature_names, sizes, nb_holdout):
logging.info('train classifier...')
seg_clf.feature_scoring_selection(features, labels, feature_names, path_out=params['path_exp'])
cv = seg_clf.CrossValidateGroups(sizes, nb_hold_out=nb_holdout)
# feature norm & train classification
fname_classif = seg_clf.TEMPLATE_NAME_CLF.format(params['classif'])
path_classif = os.path.join(params['path_exp'], fname_classif)
if os.path.isfile(path_classif) and not FORCE_RETRAIN_CLASSIF:
logging.info('loading classifier: %s', path_classif)
params_local = params.copy()
dict_classif = seg_clf.load_classifier(path_classif)
classif = dict_classif['clf_pipeline']
params = dict_classif['params']
params.update({k: params_local[k] for k in params_local if k.startswith('path_') or k.startswith('gc_')})
logging.debug('loaded PARAMETERS: %r', params)
else:
classif, path_classif = seg_clf.create_classif_search_train_export(
params['classif'],
features,
labels,
cross_val=cv,
params=params,
feature_names=feature_names,
pca_coef=params['pca_coef'],
eval_metric=params.get('classif_metric', 'f1'),
nb_search_iter=params.get('nb_classif_search', 1),
nb_workers=params['nb_workers'],
path_out=params['path_exp']
)
params['path_classif'] = path_classif
cv = seg_clf.CrossValidateGroups(sizes, nb_hold_out=nb_holdout)
seg_clf.eval_classif_cross_val_scores(
params['classif'], classif, features, labels, cross_val=cv, path_out=params['path_exp']
)
seg_clf.eval_classif_cross_val_roc(
params['classif'], classif, features, labels, cross_val=cv, path_out=params['path_exp']
)
return params, classif, path_classif
def wrapper_filter_labels(name_img_labels_slic_label_hist, label_purity, drop_labels=None, path_visu=None):
name, img, labels, slic, label_hist = name_img_labels_slic_label_hist
weights = np.max(label_hist, axis=1)
if path_visu is not None and os.path.isdir(path_visu):
used = np.zeros(len(weights))
used[np.asarray(weights) >= label_purity] = 1
if drop_labels is not None:
for lb in drop_labels:
used[labels == lb] = 0
fig = tl_visu.figure_used_samples(img, labels, slic, used)
path_fig = os.path.join(path_visu, name + '___training.jpg')
fig.savefig(path_fig)
plt.close(fig)
labels[weights < label_purity] = -1
return name, labels
def filter_train_with_purity(
dict_imgs,
dict_labels,
dict_label_hist,
label_purity,
dict_slics,
drop_labels=None,
path_visu=None,
nb_workers=NB_WORKERS,
):
_w_filter = partial(wrapper_filter_labels, label_purity=label_purity, drop_labels=drop_labels, path_visu=path_visu)
iter_vals = ((n, dict_imgs[n], dict_labels[n], dict_slics[n], dict_label_hist[n]) for n in dict_labels)
iterate = tl_expt.WrapExecuteSequence(_w_filter, iter_vals, nb_workers=nb_workers, desc='filter labels (purity)')
for n, lbs in iterate:
dict_labels[n] = lbs
return dict_labels
def main_train(params):
""" the main composed from following steps:
1) load already computed data (features and labels) or compute them now
2) visualise labeled superpixels aka annotation
3) load or train classifier with hyper-parameters search
4) perform Leave-One-Out and Leave-P-Out experiments on images
:param dict params:
:return dict:
"""
logging.getLogger().setLevel(logging.DEBUG)
logging.info('running TRAINING...')
show_visual = params.get('visual', False)
reload_dir_config = os.path.isfile(params.get('path_config', '')) or FORCE_RELOAD
stamp_unique = params.get('unique', EACH_UNIQUE_EXPERIMENT)
params = tl_expt.create_experiment_folder(
params, dir_name=NAME_EXPERIMENT, stamp_unique=stamp_unique, skip_load=reload_dir_config
)
tl_expt.set_experiment_logger(params['path_exp'])
logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))
tl_expt.create_subfolders(params['path_exp'], LIST_FOLDERS_BASE)
if show_visual:
tl_expt.create_subfolders(params['path_exp'], LIST_FOLDERS_DEBUG)
df_stat = pd.DataFrame()
path_dump = os.path.join(params['path_exp'], NAME_DUMP_TRAIN_DATA)
if os.path.isfile(path_dump) and not FORCE_RECOMP_DATA:
(dict_imgs, dict_annot, dict_slics, dict_features, dict_labels, dict_label_hist,
feature_names) = load_dump_data(path_dump)
else:
dict_imgs, dict_annot, dict_slics, dict_features, dict_labels, dict_label_hist, feature_names = \
dataset_load_images_annot_compute_features(params, show_visual)
save_dump_data(
path_dump, dict_imgs, dict_annot, dict_slics, dict_features, dict_labels, dict_label_hist, feature_names
)
if len(dict_imgs) <= 1:
raise RuntimeError('training require at least 2 images')
dict_annot_slic = {n: np.asarray(dict_labels[n])[dict_slics[n]] for n in dict_annot}
df = eval_segment_with_annot(
params, dict_annot, dict_annot_slic, dict_label_hist, NAME_CSV_SEGM_STAT_SLIC_ANNOT,
params.get('drop_labels', None), params['nb_workers']
)
df_stat = df_stat.append(get_summary(df, 'SLIC-annot'), ignore_index=True)
path_csv_stat = os.path.join(params['path_exp'], NAME_CSV_SEGM_STAT_RESULTS)
df_stat.set_index(['name']).to_csv(path_csv_stat)
if params['gc_use_trans']:
params['label_transitions'] = seg_gc.count_label_transitions_connected_segments(dict_slics, dict_labels)
logging.info('summary on edge-label transitions: \n %r', params['label_transitions'])
path_purity_visu = None
if show_visual:
path_purity_visu = os.path.join(params['path_exp'], FOLDER_SLIC_ANNOT)
dict_labels = filter_train_with_purity(
dict_imgs,
dict_labels,
dict_label_hist,
params['label_purity'],
dict_slics,
drop_labels=params.get('drop_labels', None),
path_visu=path_purity_visu,
nb_workers=params['nb_workers']
)
logging.info('prepare features...')
# concentrate features, labels
features, labels, sizes = seg_clf.convert_set_features_labels_2_dataset(
dict_features,
dict_labels,
balance_type=params['balance'],
drop_labels=[-1, np.nan] + params.get('drop_labels', [])
)
# drop "do not care" label which are -1
features = np.nan_to_num(features)
nb_holdout = params.get('cross_val', CROSS_VAL_LEAVE_OUT_SEARCH)
nb_holdout = max(1, int(round(len(sizes) * nb_holdout))) # minimum is 1
nb_holdout = min(nb_holdout, int(len(sizes) / 2)) # max is half of the set
params, classif, path_classif = load_train_classifier(params, features, labels, feature_names, sizes, nb_holdout)
def _path_expt(n):
return os.path.join(params['path_exp'], n)
# test classif. on training images
df_paths = pd.read_csv(params['path_train_list'], index_col=0)
df_paths.reset_index(inplace=True)
paths_img = df_paths['path_image'].tolist()
if RUN_TRAIN_PREDICT:
perform_train_predictions(params, paths_img, classif, show_debug_imgs=show_visual)
else:
write_skip_file(_path_expt(FOLDER_TRAIN))
gc.collect()
time.sleep(1)
# LEAVE P OUT
if params.get('run_LPO', True):
idx_paths_img = list(zip(df_paths.index.tolist(), df_paths['path_image'].tolist()))
df_stat = experiment_lpo(
params,
df_stat,
dict_annot,
idx_paths_img,
path_classif,
path_dump,
nb_holdout,
show_debug_imgs=show_visual,
)
else:
write_skip_file(_path_expt(FOLDER_LPO))
# write_skip_file(_path_expt(FOLDER_LPO_VISU))
logging.info('Statistic: \n %r', df_stat.describe())
logging.info('training DONE')
return params
def prepare_output_dir(path_pattern_imgs, path_out, name, visual=True):
""" prepare output directory for segmenting new images
:param str path_pattern_imgs:
:param str path_out:
:param str name:
:return tuple(str, str):
"""
# add last 2 dir names
name += '_'.join(path_pattern_imgs.split(os.sep)[-3:-1])
# params = tl_expt.create_experiment_folder(params, dir_name=name)
path_out = os.path.join(path_out, name)
if not os.path.isdir(path_out):
os.mkdir(path_out)
if visual:
path_visu = path_out + SUFFIX_VISUAL
if not os.path.isdir(path_visu):
os.mkdir(path_visu)
else:
path_visu = None
return path_out, path_visu
def try_segment_image(img_idx_path, params, classif, path_out, path_visu, show_debug_imgs=SHOW_DEBUG_IMAGES):
try:
return segment_image(img_idx_path, params, classif, path_out, path_visu, show_debug_imgs=show_debug_imgs)
except Exception:
logging.exception('segment_image')
return '', None, None
def main_predict(path_classif, path_pattern_imgs, path_out, name='SEGMENT___', params_local=None):
""" given trained classifier segment new images
:param str path_classif:
:param str path_pattern_imgs:
:param str path_out:
:param str name:
"""
logging.getLogger().setLevel(logging.INFO)
logging.info('running PREDICTION...')
if not path_pattern_imgs:
raise RuntimeError
dict_classif = seg_clf.load_classifier(path_classif)
classif = dict_classif['clf_pipeline']
params = dict_classif['params']
if params_local is not None:
params.update({k: params_local[k] for k in params_local if k.startswith('path_') or k.startswith('gc_')})
path_out, path_visu = prepare_output_dir(path_pattern_imgs, path_out, name, visual=params.get('visual', False))
tl_expt.set_experiment_logger(path_out)
logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))
paths_img = sorted(glob.glob(path_pattern_imgs))
logging.info('found %i images on path "%s"', len(paths_img), path_pattern_imgs)
logging.debug('run prediction...')
show_debug_imgs = params.get('visual', False)
_wrapper_segment = partial(
try_segment_image,
params=params,
classif=classif,
path_out=path_out,
path_visu=path_visu,
show_debug_imgs=show_debug_imgs,
)
list_img_path = list(zip([None] * len(paths_img), paths_img))
iterate = tl_expt.WrapExecuteSequence(
_wrapper_segment,
list_img_path,
nb_workers=params['nb_workers'],
desc='segmenting images',
)
for _ in iterate:
gc.collect()
time.sleep(1)
logging.info('prediction DONE')
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
logging.info('running...')
cli_params = arg_parse_params(SEGM_PARAMS)
cli_params = main_train(cli_params)
main_predict(
cli_params['path_classif'], cli_params['path_predict_imgs'], cli_params['path_exp'], params_local=cli_params
)
logging.info('all DONE')