-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathcompv_math_pca.cxx
executable file
·350 lines (300 loc) · 13.4 KB
/
compv_math_pca.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/* Copyright (C) 2011-2020 Doubango Telecom <https://www.doubango.org>
* File author: Mamadou DIOP (Doubango Telecom, France).
* License: GPLv3. For commercial license please contact us.
* Source code: https://github.com/DoubangoTelecom/compv
* WebSite: http://compv.org
*/
#include "compv/base/jsoncpp-1.8.4/json.h"
#include "compv/base/math/compv_math_pca.h"
#include "compv/base/math/compv_math_matrix.h"
#include "compv/base/math/compv_math_eigen.h"
#include "compv/base/math/compv_math_cast.h"
#include "compv/base/math/compv_math_stats.h"
#include "compv/base/math/compv_math.h"
#include "compv/base/compv_json.h"
#include "compv/base/compv_cpu.h"
#include "compv/base/compv_fileutils.h"
#include "compv/base/parallel/compv_parallel.h"
/*
Implemenation for Principal component analysis (PCA)
- https://en.wikipedia.org/wiki/Principal_component_analysis
- https://www.learnopencv.com/principal-component-analysis/
- Computing covar matrix: https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc541.htm
*/
#define COMPV_THIS_CLASSNAME "CompVMathPCA"
#define COMPV_MATH_PCA_SUB_SAMPLES_PER_THREAD (50 * 50)
COMPV_NAMESPACE_BEGIN()
template<typename T>
static COMPV_ERROR_CODE CompVMathPCAMean(const CompVMatPtr& input, CompVMatPtrPtr mean);
template<typename T>
static COMPV_ERROR_CODE CompVMathPCACovariance(const CompVMatPtr& input, const CompVMatPtr& mean, CompVMatPtrPtr covar);
CompVMathPCA::CompVMathPCA()
: m_nMaxDimensions(0)
{
}
CompVMathPCA:: ~CompVMathPCA()
{
}
// rowBased = true means each row represent an observation. If there are N observations with K dimension then,
// vectors will be and (N x K) matrix.
COMPV_ERROR_CODE CompVMathPCA::compute(const CompVMatPtr& observations, const int maxDimensions, const bool rowBased)
{
COMPV_CHECK_EXP_RETURN(!observations, COMPV_ERROR_CODE_E_INVALID_PARAMETER);
COMPV_CHECK_EXP_RETURN(observations->subType() != COMPV_SUBTYPE_RAW_FLOAT32 && observations->subType() != COMPV_SUBTYPE_RAW_FLOAT64, COMPV_ERROR_CODE_E_INVALID_SUBTYPE);
// Transform input (cols = observations and rows = dimensions)
CompVMatPtr input;
if (rowBased) {
// Change values to have each colum representing an observation
COMPV_CHECK_CODE_RETURN(CompVMatrix::transpose(observations, &input));
}
else {
COMPV_CHECK_CODE_RETURN(observations->clone(&input));
}
// Check input (must have at least #2 rows/observations)
COMPV_CHECK_EXP_RETURN(input->rows() <= 1 || input->rows() <= static_cast<size_t>(maxDimensions), COMPV_ERROR_CODE_E_INVALID_PARAMETER);
// Compute mean and covar
CompVMatPtr mean, covar;
if (input->subType() == COMPV_SUBTYPE_RAW_FLOAT32) {
COMPV_CHECK_CODE_RETURN((CompVMathPCAMean<compv_float32_t>(input, &mean)));
COMPV_CHECK_CODE_RETURN(CompVMathPCACovariance<compv_float32_t>(input, mean, &covar));
}
else {
COMPV_CHECK_CODE_RETURN((CompVMathPCAMean<compv_float64_t>(input, &mean)));
COMPV_CHECK_CODE_RETURN(CompVMathPCACovariance<compv_float64_t>(input, mean, &covar));
}
// Transform covariance matrix from any type to double to improve acurracy when computing the eigen values/vectors
if (covar->subType() != COMPV_SUBTYPE_RAW_FLOAT64) {
COMPV_CHECK_CODE_RETURN((CompVMathCast::process_static<compv_float32_t, compv_float64_t>(covar, &covar)));
}
// Compute Eigen values and Eigen vectors
static const bool kSortEigenValuesVectors = true;
static const bool kRowVectors = true; // EigenVectors (output for 'CompVMatrix::eigenS') as rows?
static const bool kForceZerosInD = true;
CompVMatPtr eigenValues, eigenVectors;
COMPV_CHECK_CODE_RETURN(CompVMatrix::eigenS(covar, &eigenValues, &eigenVectors, kSortEigenValuesVectors, kRowVectors, kForceZerosInD));
// Norm eigen vectors
#if 0 // MUST NOT
COMPV_ASSERT(false);
COMPV_CHECK_CODE_RETURN(CompVMathStats::normMinmax(eigenVectors, &eigenVectors));
#endif
// Create final eigen values/vectors
CompVMatPtr ptr32fEigenVectors, ptr32fEigenValues, ptr32fMean;
const CompVRectFloat32 roiVectors = {
0.f,
0.f,
static_cast<compv_float32_t>(eigenVectors->cols()),
static_cast<compv_float32_t>(maxDimensions - 1)
};
CompVMatPtr eigenVectorsBind;
COMPV_CHECK_CODE_RETURN(eigenVectors->bind(&eigenVectorsBind, roiVectors));
COMPV_CHECK_CODE_RETURN(CompVMat::newObjAligned<compv_float32_t>(&ptr32fEigenValues, 1, maxDimensions));
compv_float32_t* ptr32fEigenValuesPtr = ptr32fEigenValues->ptr<compv_float32_t>();
if (eigenVectors->subType() == COMPV_SUBTYPE_RAW_FLOAT64) {
// Vectors
COMPV_CHECK_CODE_RETURN((CompVMathCast::process_static<compv_float64_t, compv_float32_t>(eigenVectorsBind, &ptr32fEigenVectors)));
// Values
for (size_t i = 0; i < static_cast<size_t>(maxDimensions); ++i) {
ptr32fEigenValuesPtr[i] = static_cast<compv_float32_t>(*eigenValues->ptr<const compv_float64_t>(i, i));
}
}
else {
// MUST clone because 'eigenVectorsBind' lifetime is tied to 'eigenVectors' which is a local variable
COMPV_CHECK_CODE_RETURN(CompVMat::newObj(&ptr32fEigenVectors, eigenVectorsBind));
COMPV_CHECK_CODE_RETURN(CompVMem::copy(ptr32fEigenVectors->ptr<void>(), eigenVectorsBind->ptr<const void>(), ptr32fEigenVectors->dataSizeInBytes()));
for (size_t i = 0; i < static_cast<size_t>(maxDimensions); ++i) {
ptr32fEigenValuesPtr[i] = *eigenValues->ptr<const compv_float32_t>(i, i);
}
}
// Mean
if (mean->subType() == COMPV_SUBTYPE_RAW_FLOAT64) {
COMPV_CHECK_CODE_RETURN((CompVMathCast::process_static<compv_float64_t, compv_float32_t>(mean, &ptr32fMean)));
}
else {
ptr32fMean = mean;
}
// Set values
m_ptr32fEigenValues = ptr32fEigenValues;
m_ptr32fEigenVectors = ptr32fEigenVectors;
m_ptr32fMean = ptr32fMean;
m_nMaxDimensions = maxDimensions;
return COMPV_ERROR_CODE_S_OK;
}
COMPV_ERROR_CODE CompVMathPCA::read(CompVMathPCAPtrPtr pca, const char* filePath)
{
COMPV_CHECK_EXP_RETURN(!pca || !filePath, COMPV_ERROR_CODE_E_INVALID_PARAMETER);
CompVBufferPtr content;
COMPV_GCC_DISABLE_WARNINGS_BEGIN("-Wdeprecated-declarations")
Json::Reader reader;
COMPV_GCC_DISABLE_WARNINGS_END()
Json::Value root;
COMPV_CHECK_CODE_RETURN(CompVFileUtils::read(filePath, &content));
COMPV_CHECK_EXP_RETURN(!reader.parse(reinterpret_cast<const char*>(content->ptr()), reinterpret_cast<const char*>(content->ptr()) + content->size(), root, false)
, COMPV_ERROR_CODE_E_JSON_CPP, "JSON parsing failed");
CompVMatPtr ptr32fMean, ptr32fEigenVectors, ptr32fEigenValues;
COMPV_CHECK_CODE_RETURN(CompVJSON::read(&root, "mean", &ptr32fMean));
COMPV_CHECK_CODE_RETURN(CompVJSON::read(&root, "vectors", &ptr32fEigenVectors));
COMPV_CHECK_CODE_RETURN(CompVJSON::read(&root, "values", &ptr32fEigenValues));
COMPV_ASSERT(ptr32fMean->rows() == 1);
COMPV_ASSERT(ptr32fEigenValues->rows() == 1);
COMPV_ASSERT(ptr32fEigenVectors->rows() == ptr32fEigenValues->cols());
COMPV_ASSERT(ptr32fEigenVectors->cols() == ptr32fMean->cols());
COMPV_CHECK_CODE_RETURN(CompVMathPCA::newObj(pca));
(*pca)->m_nMaxDimensions = static_cast<int>(ptr32fEigenVectors->rows());
(*pca)->m_ptr32fMean = ptr32fMean;
(*pca)->m_ptr32fEigenVectors = ptr32fEigenVectors;
(*pca)->m_ptr32fEigenValues = ptr32fEigenValues;
return COMPV_ERROR_CODE_S_OK;
}
COMPV_ERROR_CODE CompVMathPCA::write(const char* filePath) const
{
COMPV_CHECK_EXP_RETURN(!filePath, COMPV_ERROR_CODE_E_INVALID_PARAMETER);
COMPV_CHECK_EXP_RETURN(!isReady(), COMPV_ERROR_CODE_E_INVALID_STATE, "Not ready. You should call compute first");
Json::Value root;
COMPV_CHECK_CODE_RETURN(CompVJSON::write(&root, "vectors", m_ptr32fEigenVectors));
COMPV_CHECK_CODE_RETURN(CompVJSON::write(&root, "values", m_ptr32fEigenValues));
COMPV_CHECK_CODE_RETURN(CompVJSON::write(&root, "mean", m_ptr32fMean));
COMPV_GCC_DISABLE_WARNINGS_BEGIN("-Wdeprecated-declarations")
Json::FastWriter writer;
COMPV_GCC_DISABLE_WARNINGS_END()
const std::string root_string = writer.write(root);
COMPV_CHECK_EXP_RETURN(root_string.empty(), COMPV_ERROR_CODE_E_JSON_CPP, "Writting json object failed");
COMPV_CHECK_CODE_RETURN(CompVFileUtils::write(filePath, root_string.c_str(), root_string.size()));
return COMPV_ERROR_CODE_S_OK;
}
COMPV_ERROR_CODE CompVMathPCA::project(const CompVMatPtr& observations, CompVMatPtrPtr vectors) const
{
COMPV_CHECK_EXP_RETURN(!observations || observations->isEmpty() || !vectors, COMPV_ERROR_CODE_E_INVALID_PARAMETER);
COMPV_CHECK_EXP_RETURN(!isReady(), COMPV_ERROR_CODE_E_INVALID_STATE, "Not ready. You should call compute first");
if (observations->cols() != m_ptr32fEigenVectors->cols()) {
COMPV_DEBUG_ERROR_EX(COMPV_THIS_CLASSNAME, "Invalize dimension. Found %zu, expected %zu", observations->cols(), m_ptr32fEigenVectors->cols());
return COMPV_ERROR_CODE_E_INVALID_CALL;
}
const COMPV_SUBTYPE subtype = m_ptr32fEigenVectors->subType();
if (observations->subType() != subtype) {
COMPV_DEBUG_ERROR_EX(COMPV_THIS_CLASSNAME, "Invalize subtype. Found %s, expected %s", CompVGetSubtypeString(observations->subType()), CompVGetSubtypeString(subtype));
return COMPV_ERROR_CODE_E_INVALID_SUBTYPE;
}
// Substract mean (kind of normaliz -zero-mean centered-)
CompVMatPtr input;
if (m_ptr32fMean) {
COMPV_ASSERT(m_ptr32fMean->cols() == observations->cols());
const size_t rows = observations->rows();
if (rows == 1) {
COMPV_CHECK_CODE_RETURN(CompVMath::sub(observations, m_ptr32fMean, &input));
}
else {
COMPV_CHECK_CODE_RETURN(observations->clone(&input));
auto funcPtr = [&](const size_t ystart, const size_t yend) -> COMPV_ERROR_CODE {
for (size_t j = ystart; j < yend; ++j) {
// Sub(A, B, R) expect A.rows == B.rows. In our case, Mean.rows == 1 -> bind row by row
const CompVRectFloat32 roi = {
0.f, // left
static_cast<compv_float32_t>(j), // top
static_cast<compv_float32_t>(input->cols()), // right
static_cast<compv_float32_t>(j) // bottom
};
CompVMatPtr inputBind;
COMPV_CHECK_CODE_RETURN(input->bind(&inputBind, roi));
COMPV_CHECK_CODE_RETURN(CompVMath::sub(inputBind, m_ptr32fMean, &inputBind)); // Sub(A, B, R) will NOT override R if [R==A] or [R==B]
}
return COMPV_ERROR_CODE_S_OK;
};
COMPV_CHECK_CODE_RETURN(CompVThreadDispatcher::dispatchDividingAcrossY(
funcPtr,
input->cols(),
input->rows(),
COMPV_MATH_PCA_SUB_SAMPLES_PER_THREAD
));
}
}
else {
input = observations;
}
// Project
CompVMatPtr vectors_ = (*vectors == input) ? nullptr : *vectors;
COMPV_CHECK_CODE_RETURN(CompVMath::mulABt(input, m_ptr32fEigenVectors, &vectors_));
// Set result and return
*vectors = vectors_;
return COMPV_ERROR_CODE_S_OK;
}
COMPV_ERROR_CODE CompVMathPCA::newObj(CompVMathPCAPtrPtr pca)
{
COMPV_CHECK_EXP_RETURN(!pca, COMPV_ERROR_CODE_E_INVALID_PARAMETER);
CompVMathPCAPtr pca_ = new CompVMathPCA();
COMPV_CHECK_EXP_RETURN(!pca_, COMPV_ERROR_CODE_E_OUT_OF_MEMORY);
*pca = pca_;
return COMPV_ERROR_CODE_S_OK;
}
template<typename T>
static COMPV_ERROR_CODE CompVMathPCAMean(const CompVMatPtr& input, CompVMatPtrPtr mean)
{
COMPV_DEBUG_INFO_CODE_NOT_OPTIMIZED("No SIMD or GPU implementation could be found");
COMPV_ASSERT(input->isRawTypeMatch<T>());
// Each column in input represent an observation -> each row represent the same component
const size_t cols = input->cols();
const size_t rows = input->rows();
const size_t stride = input->stride();
CompVMatPtr mean_ = (input == *mean) ? nullptr : *mean;
COMPV_CHECK_CODE_RETURN(CompVMat::newObjAligned<T>(&mean_, 1, rows));
T* meanPtr = mean_->ptr<T>();
const T* inputPtr = input->ptr<const T>();
const double scale = 1.0 / static_cast<double>(cols);
for (size_t j = 0; j < rows; ++j) {
double sum = 0;
for (size_t i = 0; i < cols; ++i) {
sum += inputPtr[i];
}
meanPtr[j] = static_cast<T>(sum * scale);
inputPtr += stride;
}
*mean = mean_;
return COMPV_ERROR_CODE_S_OK;
}
// https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc541.htm
template<typename T>
static COMPV_ERROR_CODE CompVMathPCACovariance(const CompVMatPtr& input, const CompVMatPtr& mean, CompVMatPtrPtr covar)
{
// For now this function is called on training phase only
// -> do not waste your time writing SIMD/GPGPU code
COMPV_DEBUG_INFO_CODE_NOT_OPTIMIZED("No MT implementation could be found");
COMPV_ASSERT(input->subType() == mean->subType() && input->isRawTypeMatch<T>());
COMPV_ASSERT(input->rows() == mean->cols() && mean->rows() == 1);
const size_t cols = input->cols();
const size_t rows = input->rows();
const size_t stride = input->stride();
CompVMatPtr inputSubMean;
COMPV_CHECK_CODE_RETURN(CompVMat::newObjAligned<T>(&inputSubMean, rows, cols, stride));
// Substract mean
// Row-major, different than the SubMean compute in CompVMathPCASubstractMean
COMPV_DEBUG_INFO_CODE_NOT_OPTIMIZED("No SIMD or GPU implementation could be found - SubstractMean");
const T* meanPtr = mean->ptr<const T>();
const T* inputPtr = input->ptr<const T>();
T* inputSubMeanPtr = inputSubMean->ptr<T>();
for (size_t j = 0; j < rows; ++j) {
const T mean_ = meanPtr[j];
for (size_t i = 0; i < cols; ++i) {
inputSubMeanPtr[i] = (inputPtr[i] - mean_);
}
inputPtr += stride;
inputSubMeanPtr += stride;
}
// Covar = M * Mt
COMPV_CHECK_CODE_RETURN(CompVMath::mulABt(inputSubMean, inputSubMean, covar));
// Scale
COMPV_DEBUG_INFO_CODE_NOT_OPTIMIZED("No SIMD or GPU implementation could be found - Scale");
if (cols > 1) {
const T scale = 1 / static_cast<T>(cols - 1);
const size_t cols = (*covar)->cols();
const size_t rows = (*covar)->rows();
const size_t stride = (*covar)->stride();
T* covarPtr = (*covar)->ptr<T>();
for (size_t j = 0; j < rows; ++j) {
for (size_t i = 0; i < cols; ++i) {
covarPtr[i] *= scale;
}
covarPtr += stride;
}
}
return COMPV_ERROR_CODE_S_OK;
}
COMPV_NAMESPACE_END()