-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun_baselines.py
217 lines (170 loc) · 7.26 KB
/
run_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from argparse import ArgumentParser
import numpy as np
from fancyimpute import MatrixFactorization, IterativeImputer
from sklearn.neighbors import kneighbors_graph
from lib import datasets
from lib.utils import numpy_metrics
from lib.utils.parser_utils import str_to_bool
metrics = {
'mae': numpy_metrics.masked_mae,
'mse': numpy_metrics.masked_mse,
'mre': numpy_metrics.masked_mre,
'mape': numpy_metrics.masked_mape
}
def parse_args():
parser = ArgumentParser()
# experiment setting
parser.add_argument('--datasets', nargs='+', type=str, default=['all'])
parser.add_argument('--imputers', nargs='+', type=str, default=['all'])
parser.add_argument('--n-runs', type=int, default=5)
parser.add_argument('--in-sample', type=str_to_bool, nargs='?', const=True, default=True)
# SpatialKNNImputer params
parser.add_argument('--k', type=int, default=10)
# MFImputer params
parser.add_argument('--rank', type=int, default=10)
# MICEImputer params
parser.add_argument('--mice-iterations', type=int, default=100)
parser.add_argument('--mice-n-features', type=int, default=None)
args = parser.parse_args()
# parse dataset
if args.datasets[0] == 'all':
args.datasets = ['air36', 'air', 'bay', 'irish', 'la', 'bay_noise', 'irish_noise', 'la_noise']
# parse imputers
if args.imputers[0] == 'all':
args.imputers = ['mean', 'knn', 'mf', 'mice']
if not args.in_sample:
args.imputers = [name for name in args.imputers if name in ['mean', 'mice']]
return args
class Imputer:
short_name: str
def __init__(self, method=None, is_deterministic=True, in_sample=True):
self.name = self.__class__.__name__
self.method = method
self.is_deterministic = is_deterministic
self.in_sample = in_sample
def fit(self, x, mask):
if not self.in_sample:
x_hat = np.where(mask, x, np.nan)
return self.method.fit(x_hat)
def predict(self, x, mask):
x_hat = np.where(mask, x, np.nan)
if self.in_sample:
return self.method.fit_transform(x_hat)
else:
return self.method.transform(x_hat)
def params(self):
return dict()
class SpatialKNNImputer(Imputer):
short_name = 'knn'
def __init__(self, adj, k=20):
super(SpatialKNNImputer, self).__init__()
self.k = k
# normalize sim between [0, 1]
sim = (adj + adj.min()) / (adj.max() + adj.min())
knns = kneighbors_graph(1 - sim,
n_neighbors=self.k,
include_self=False,
metric='precomputed').toarray()
self.knns = knns
def fit(self, x, mask):
pass
def predict(self, x, mask):
x = np.where(mask, x, 0)
with np.errstate(divide='ignore', invalid='ignore'):
y_hat = (x @ self.knns.T) / (mask @ self.knns.T)
y_hat[~np.isfinite(y_hat)] = x.mean()
return np.where(mask, x, y_hat)
def params(self):
return dict(k=self.k)
class MeanImputer(Imputer):
short_name = 'mean'
def fit(self, x, mask):
d = np.where(mask, x, np.nan)
self.means = np.nanmean(d, axis=0, keepdims=True)
def predict(self, x, mask):
if self.in_sample:
d = np.where(mask, x, np.nan)
means = np.nanmean(d, axis=0, keepdims=True)
else:
means = self.means
return np.where(mask, x, means)
class MatrixFactorizationImputer(Imputer):
short_name = 'mf'
def __init__(self, rank=10, loss='mae', verbose=0):
method = MatrixFactorization(rank=rank, loss=loss, verbose=verbose)
super(MatrixFactorizationImputer, self).__init__(method, is_deterministic=False, in_sample=True)
def params(self):
return dict(rank=self.method.rank)
class MICEImputer(Imputer):
short_name = 'mice'
def __init__(self, max_iter=100, n_nearest_features=None, in_sample=True, verbose=False):
method = IterativeImputer(max_iter=max_iter, n_nearest_features=n_nearest_features, verbose=verbose)
is_deterministic = n_nearest_features is None
super(MICEImputer, self).__init__(method, is_deterministic=is_deterministic, in_sample=in_sample)
def params(self):
return dict(max_iter=self.method.max_iter, k=self.method.n_nearest_features or -1)
def get_dataset(dataset_name):
if dataset_name[:3] == 'air':
dataset = datasets.AirQuality(impute_nans=True, small=dataset_name[3:] == '36')
elif dataset_name == 'bay':
dataset = datasets.MissingValuesPemsBay()
elif dataset_name == 'la':
dataset = datasets.MissingValuesMetrLA()
elif dataset_name == 'la_noise':
dataset = datasets.MissingValuesMetrLA(p_fault=0., p_noise=0.25)
elif dataset_name == 'bay_noise':
dataset = datasets.MissingValuesPemsBay(p_fault=0., p_noise=0.25)
else:
raise ValueError(f"Dataset {dataset_name} not available in this setting.")
# split in train/test
if isinstance(dataset, datasets.AirQuality):
test_slice = np.in1d(dataset.df.index.month, dataset.test_months)
train_slice = ~test_slice
else:
train_slice = np.zeros(len(dataset)).astype(bool)
train_slice[:-int(0.2 * len(dataset))] = True
# integrate back eval values in dataset
dataset.eval_mask[train_slice] = 0
return dataset, train_slice
def get_imputer(imputer_name, args):
if imputer_name == 'mean':
imputer = MeanImputer(in_sample=args.in_sample)
elif imputer_name == 'knn':
imputer = SpatialKNNImputer(adj=args.adj, k=args.k)
elif imputer_name == 'mf':
imputer = MatrixFactorizationImputer(rank=args.rank)
elif imputer_name == 'mice':
imputer = MICEImputer(max_iter=args.mice_iterations,
n_nearest_features=args.mice_n_features,
in_sample=args.in_sample)
else:
raise ValueError(f"Imputer {imputer_name} not available in this setting.")
return imputer
def run(imputer, dataset, train_slice):
test_slice = ~train_slice
if args.in_sample:
x_train, mask_train = dataset.numpy(), dataset.training_mask
y_hat = imputer.predict(x_train, mask_train)[test_slice]
else:
x_train, mask_train = dataset.numpy()[train_slice], dataset.training_mask[train_slice]
imputer.fit(x_train, mask_train)
x_test, mask_test = dataset.numpy()[test_slice], dataset.training_mask[test_slice]
y_hat = imputer.predict(x_test, mask_test)
# Evaluate model
y_true = dataset.numpy()[test_slice]
eval_mask = dataset.eval_mask[test_slice]
for metric, metric_fn in metrics.items():
error = metric_fn(y_hat, y_true, eval_mask)
print(f'{imputer.name} on {ds_name} {metric}: {error:.4f}')
if __name__ == '__main__':
args = parse_args()
print(args.__dict__)
for ds_name in args.datasets:
dataset, train_slice = get_dataset(ds_name)
args.adj = dataset.get_similarity(thr=0.1)
# Instantiate imputers
imputers = [get_imputer(name, args) for name in args.imputers]
for imputer in imputers:
n_runs = 1 if imputer.is_deterministic else args.n_runs
for _ in range(n_runs):
run(imputer, dataset, train_slice)