-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun_imputation.py
277 lines (235 loc) · 11.8 KB
/
run_imputation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import copy
import datetime
import os
import pathlib
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import yaml
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from torch.optim.lr_scheduler import CosineAnnealingLR
from lib import fillers, datasets, config
from lib.data.datamodule import SpatioTemporalDataModule
from lib.data.imputation_dataset import ImputationDataset, GraphImputationDataset
from lib.nn import models
from lib.nn.utils.metric_base import MaskedMetric
from lib.nn.utils.metrics import MaskedMAE, MaskedMAPE, MaskedMSE, MaskedMRE
from lib.utils import parser_utils, numpy_metrics, ensure_list, prediction_dataframe
from lib.utils.parser_utils import str_to_bool
def has_graph_support(model_cls):
return model_cls in [models.GRINet, models.MPGRUNet, models.BiMPGRUNet]
def get_model_classes(model_str):
if model_str == 'brits':
model, filler = models.BRITSNet, fillers.BRITSFiller
elif model_str == 'grin':
model, filler = models.GRINet, fillers.GraphFiller
elif model_str == 'mpgru':
model, filler = models.MPGRUNet, fillers.GraphFiller
elif model_str == 'bimpgru':
model, filler = models.BiMPGRUNet, fillers.GraphFiller
elif model_str == 'var':
model, filler = models.VARImputer, fillers.Filler
elif model_str == 'gain':
model, filler = models.RGAINNet, fillers.RGAINFiller
elif model_str == 'birnn':
model, filler = models.BiRNNImputer, fillers.MultiImputationFiller
elif model_str == 'rnn':
model, filler = models.RNNImputer, fillers.Filler
else:
raise ValueError(f'Model {model_str} not available.')
return model, filler
def get_dataset(dataset_name):
if dataset_name[:3] == 'air':
dataset = datasets.AirQuality(impute_nans=True, small=dataset_name[3:] == '36')
elif dataset_name == 'bay_block':
dataset = datasets.MissingValuesPemsBay()
elif dataset_name == 'la_block':
dataset = datasets.MissingValuesMetrLA()
elif dataset_name == 'la_point':
dataset = datasets.MissingValuesMetrLA(p_fault=0., p_noise=0.25)
elif dataset_name == 'bay_point':
dataset = datasets.MissingValuesPemsBay(p_fault=0., p_noise=0.25)
else:
raise ValueError(f"Dataset {dataset_name} not available in this setting.")
return dataset
def parse_args():
# Argument parser
parser = ArgumentParser()
parser.add_argument('--seed', type=int, default=-1)
parser.add_argument("--model-name", type=str, default='brits')
parser.add_argument("--dataset-name", type=str, default='air36')
parser.add_argument("--config", type=str, default=None)
# Splitting/aggregation params
parser.add_argument('--in-sample', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--val-len', type=float, default=0.1)
parser.add_argument('--test-len', type=float, default=0.2)
parser.add_argument('--aggregate-by', type=str, default='mean')
# Training params
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--patience', type=int, default=40)
parser.add_argument('--l2-reg', type=float, default=0.)
parser.add_argument('--scaled-target', type=str_to_bool, nargs='?', const=True, default=True)
parser.add_argument('--grad-clip-val', type=float, default=5.)
parser.add_argument('--grad-clip-algorithm', type=str, default='norm')
parser.add_argument('--loss-fn', type=str, default='l1_loss')
parser.add_argument('--use-lr-schedule', type=str_to_bool, nargs='?', const=True, default=True)
parser.add_argument('--consistency-loss', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--whiten-prob', type=float, default=0.05)
parser.add_argument('--pred-loss-weight', type=float, default=1.0)
parser.add_argument('--warm-up', type=int, default=0)
# graph params
parser.add_argument("--adj-threshold", type=float, default=0.1)
# gain hparams
parser.add_argument('--alpha', type=float, default=10.)
parser.add_argument('--hint-rate', type=float, default=0.7)
parser.add_argument('--g-train-freq', type=int, default=1)
parser.add_argument('--d-train-freq', type=int, default=5)
known_args, _ = parser.parse_known_args()
model_cls, _ = get_model_classes(known_args.model_name)
parser = model_cls.add_model_specific_args(parser)
parser = SpatioTemporalDataModule.add_argparse_args(parser)
parser = ImputationDataset.add_argparse_args(parser)
args = parser.parse_args()
if args.config is not None:
with open(args.config, 'r') as fp:
config_args = yaml.load(fp, Loader=yaml.FullLoader)
for arg in config_args:
setattr(args, arg, config_args[arg])
return args
def run_experiment(args):
# Set configuration and seed
args = copy.deepcopy(args)
if args.seed < 0:
args.seed = np.random.randint(1e9)
torch.set_num_threads(1)
pl.seed_everything(args.seed)
model_cls, filler_cls = get_model_classes(args.model_name)
dataset = get_dataset(args.dataset_name)
########################################
# create logdir and save configuration #
########################################
exp_name = f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_{args.seed}"
logdir = os.path.join(config['logs'], args.dataset_name, args.model_name, exp_name)
# save config for logging
pathlib.Path(logdir).mkdir(parents=True)
with open(os.path.join(logdir, 'config.yaml'), 'w') as fp:
yaml.dump(parser_utils.config_dict_from_args(args), fp, indent=4, sort_keys=True)
########################################
# data module #
########################################
# instantiate dataset
dataset_cls = GraphImputationDataset if has_graph_support(model_cls) else ImputationDataset
torch_dataset = dataset_cls(*dataset.numpy(return_idx=True),
mask=dataset.training_mask,
eval_mask=dataset.eval_mask,
window=args.window,
stride=args.stride)
# get train/val/test indices
split_conf = parser_utils.filter_function_args(args, dataset.splitter, return_dict=True)
train_idxs, val_idxs, test_idxs = dataset.splitter(torch_dataset, **split_conf)
# configure datamodule
data_conf = parser_utils.filter_args(args, SpatioTemporalDataModule, return_dict=True)
dm = SpatioTemporalDataModule(torch_dataset, train_idxs=train_idxs, val_idxs=val_idxs, test_idxs=test_idxs,
**data_conf)
dm.setup()
# if out of sample in air, add values removed for evaluation in train set
if not args.in_sample and args.dataset_name[:3] == 'air':
dm.torch_dataset.mask[dm.train_slice] |= dm.torch_dataset.eval_mask[dm.train_slice]
# get adjacency matrix
adj = dataset.get_similarity(thr=args.adj_threshold)
# force adj with no self loop
np.fill_diagonal(adj, 0.)
########################################
# predictor #
########################################
# model's inputs
additional_model_hparams = dict(adj=adj, d_in=dm.d_in, n_nodes=dm.n_nodes)
model_kwargs = parser_utils.filter_args(args={**vars(args), **additional_model_hparams},
target_cls=model_cls,
return_dict=True)
# loss and metrics
loss_fn = MaskedMetric(metric_fn=getattr(F, args.loss_fn),
compute_on_step=True,
metric_kwargs={'reduction': 'none'})
metrics = {'mae': MaskedMAE(compute_on_step=False),
'mape': MaskedMAPE(compute_on_step=False),
'mse': MaskedMSE(compute_on_step=False),
'mre': MaskedMRE(compute_on_step=False)}
# filler's inputs
scheduler_class = CosineAnnealingLR if args.use_lr_schedule else None
additional_filler_hparams = dict(model_class=model_cls,
model_kwargs=model_kwargs,
optim_class=torch.optim.Adam,
optim_kwargs={'lr': args.lr,
'weight_decay': args.l2_reg},
loss_fn=loss_fn,
metrics=metrics,
scheduler_class=scheduler_class,
scheduler_kwargs={
'eta_min': 0.0001,
'T_max': args.epochs
},
alpha=args.alpha,
hint_rate=args.hint_rate,
g_train_freq=args.g_train_freq,
d_train_freq=args.d_train_freq)
filler_kwargs = parser_utils.filter_args(args={**vars(args), **additional_filler_hparams},
target_cls=filler_cls,
return_dict=True)
filler = filler_cls(**filler_kwargs)
########################################
# training #
########################################
# callbacks
early_stop_callback = EarlyStopping(monitor='val_mae', patience=args.patience, mode='min')
checkpoint_callback = ModelCheckpoint(dirpath=logdir, save_top_k=1, monitor='val_mae', mode='min')
logger = TensorBoardLogger(logdir, name="model")
trainer = pl.Trainer(max_epochs=args.epochs,
logger=logger,
default_root_dir=logdir,
gpus=1 if torch.cuda.is_available() else None,
gradient_clip_val=args.grad_clip_val,
gradient_clip_algorithm=args.grad_clip_algorithm,
callbacks=[early_stop_callback, checkpoint_callback])
trainer.fit(filler, datamodule=dm)
########################################
# testing #
########################################
filler.load_state_dict(torch.load(checkpoint_callback.best_model_path,
lambda storage, loc: storage)['state_dict'])
filler.freeze()
trainer.test()
filler.eval()
if torch.cuda.is_available():
filler.cuda()
with torch.no_grad():
y_true, y_hat, mask = filler.predict_loader(dm.test_dataloader(), return_mask=True)
y_hat = y_hat.detach().cpu().numpy().reshape(y_hat.shape[:3]) # reshape to (eventually) squeeze node channels
# Test imputations in whole series
eval_mask = dataset.eval_mask[dm.test_slice]
df_true = dataset.df.iloc[dm.test_slice]
metrics = {
'mae': numpy_metrics.masked_mae,
'mse': numpy_metrics.masked_mse,
'mre': numpy_metrics.masked_mre,
'mape': numpy_metrics.masked_mape
}
# Aggregate predictions in dataframes
index = dm.torch_dataset.data_timestamps(dm.testset.indices, flatten=False)['horizon']
aggr_methods = ensure_list(args.aggregate_by)
df_hats = prediction_dataframe(y_hat, index, dataset.df.columns, aggregate_by=aggr_methods)
df_hats = dict(zip(aggr_methods, df_hats))
for aggr_by, df_hat in df_hats.items():
# Compute error
print(f'- AGGREGATE BY {aggr_by.upper()}')
for metric_name, metric_fn in metrics.items():
error = metric_fn(df_hat.values, df_true.values, eval_mask).item()
print(f' {metric_name}: {error:.4f}')
return y_true, y_hat, mask
if __name__ == '__main__':
args = parse_args()
run_experiment(args)