-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun_synthetic.py
221 lines (183 loc) · 9.18 KB
/
run_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import copy
import datetime
import os
import pathlib
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import yaml
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from torch.optim.lr_scheduler import CosineAnnealingLR
from lib import fillers, config
from lib.datasets import ChargedParticles
from lib.nn import models
from lib.nn.utils.metric_base import MaskedMetric
from lib.nn.utils.metrics import MaskedMAE, MaskedMAPE, MaskedMSE, MaskedMRE
from lib.utils import parser_utils
from lib.utils.parser_utils import str_to_bool
def has_graph_support(model_cls):
return model_cls is models.GRINet
def get_model_classes(model_str):
if model_str == 'brits':
model, filler = models.BRITSNet, fillers.BRITSFiller
elif model_str == 'grin':
model, filler = models.GRINet, fillers.GraphFiller
else:
raise ValueError(f'Model {model_str} not available.')
return model, filler
def parse_args():
# Argument parser
parser = ArgumentParser()
parser.add_argument('--seed', type=int, default=-1)
parser.add_argument("--model-name", type=str, default='bigrill')
parser.add_argument("--config", type=str, default=None)
# Dataset params
parser.add_argument('--static-adj', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--window', type=int, default=50)
parser.add_argument('--p-block', type=float, default=0.025)
parser.add_argument('--p-point', type=float, default=0.025)
parser.add_argument('--min-seq', type=int, default=5)
parser.add_argument('--max-seq', type=int, default=10)
parser.add_argument('--use-exogenous', type=str_to_bool, nargs='?', const=True, default=True)
# Splitting/aggregation params
parser.add_argument('--val-len', type=float, default=0.1)
parser.add_argument('--test-len', type=float, default=0.2)
# Training params
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--patience', type=int, default=40)
parser.add_argument('--l2-reg', type=float, default=0.)
parser.add_argument('--scaled-target', type=str_to_bool, nargs='?', const=True, default=False)
parser.add_argument('--grad-clip-val', type=float, default=5.)
parser.add_argument('--grad-clip-algorithm', type=str, default='norm')
parser.add_argument('--loss-fn', type=str, default='mse_loss')
parser.add_argument('--use-lr-schedule', type=str_to_bool, nargs='?', const=True, default=True)
parser.add_argument('--whiten-prob', type=float, default=0.05)
parser.add_argument('--pred-loss-weight', type=float, default=1.0)
parser.add_argument('--warm-up', type=int, default=0)
# graph params
parser.add_argument("--adj-threshold", type=float, default=0.1)
known_args, _ = parser.parse_known_args()
model_cls, _ = get_model_classes(known_args.model_name)
parser = model_cls.add_model_specific_args(parser)
args = parser.parse_args()
if args.config is not None:
with open(args.config, 'r') as fp:
config_args = yaml.load(fp, Loader=yaml.FullLoader)
for arg in config_args:
setattr(args, arg, config_args[arg])
return args
def run_experiment(args):
# Set configuration and seed
args = copy.deepcopy(args)
if args.seed < 0:
args.seed = np.random.randint(1e9)
torch.set_num_threads(1)
pl.seed_everything(args.seed)
########################################
# load dataset and model #
########################################
model_cls, filler_cls = get_model_classes(args.model_name)
dataset = ChargedParticles(static_adj=args.static_adj,
window=args.window,
p_block=args.p_block,
p_point=args.p_point,
max_seq=args.max_seq,
min_seq=args.min_seq,
use_exogenous=args.use_exogenous,
graph_mode=has_graph_support(model_cls))
dataset.split(args.val_len, args.test_len)
# get adjacency matrix
adj = dataset.get_similarity()
np.fill_diagonal(adj, 0.) # force adj with no self loop
########################################
# create logdir and save configuration #
########################################
exp_name = f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_{args.seed}"
logdir = os.path.join(config['logs'], 'synthetic', args.model_name, exp_name)
# save config for logging
pathlib.Path(logdir).mkdir(parents=True)
with open(os.path.join(logdir, 'config.yaml'), 'w') as fp:
yaml.dump(parser_utils.config_dict_from_args(args), fp, indent=4, sort_keys=True)
########################################
# predictor #
########################################
# model's inputs
if has_graph_support(model_cls):
model_params = dict(adj=adj, d_in=dataset.n_channels, d_u=dataset.n_exogenous, n_nodes=dataset.n_nodes)
else:
model_params = dict(d_in=(dataset.n_channels * dataset.n_nodes), d_u=(dataset.n_channels * dataset.n_exogenous))
model_kwargs = parser_utils.filter_args(args={**vars(args), **model_params},
target_cls=model_cls,
return_dict=True)
# loss and metrics
loss_fn = MaskedMetric(metric_fn=getattr(F, args.loss_fn),
compute_on_step=True,
metric_kwargs={'reduction': 'none'})
metrics = {'mae': MaskedMAE(compute_on_step=False),
'mape': MaskedMAPE(compute_on_step=False),
'mse': MaskedMSE(compute_on_step=False),
'mre': MaskedMRE(compute_on_step=False)}
# filler's inputs
scheduler_class = CosineAnnealingLR if args.use_lr_schedule else None
additional_filler_hparams = dict(model_class=model_cls,
model_kwargs=model_kwargs,
optim_class=torch.optim.Adam,
optim_kwargs={'lr': args.lr,
'weight_decay': args.l2_reg},
loss_fn=loss_fn,
metrics=metrics,
scheduler_class=scheduler_class,
scheduler_kwargs={
'eta_min': 0.0001,
'T_max': args.epochs
},
alpha=args.alpha,
hint_rate=args.hint_rate,
g_train_freq=args.g_train_freq,
d_train_freq=args.d_train_freq)
filler_kwargs = parser_utils.filter_args(args={**vars(args), **additional_filler_hparams},
target_cls=filler_cls,
return_dict=True)
filler = filler_cls(**filler_kwargs)
########################################
# logging options #
########################################
# log number of parameters
args.trainable_parameters = filler.trainable_parameters
# log statistics on masks
for mask_type in ['mask', 'eval_mask', 'training_mask']:
mask_type_mean = getattr(dataset, mask_type).float().mean().item()
setattr(args, mask_type, mask_type_mean)
print(args)
########################################
# training #
########################################
# callbacks
early_stop_callback = EarlyStopping(monitor='val_mse', patience=args.patience, mode='min')
checkpoint_callback = ModelCheckpoint(dirpath=logdir, save_top_k=1, monitor='val_mse', mode='min')
logger = TensorBoardLogger(logdir, name="model")
trainer = pl.Trainer(max_epochs=args.epochs,
default_root_dir=logdir,
logger=logger,
gpus=1 if torch.cuda.is_available() else None,
gradient_clip_val=args.grad_clip_val,
gradient_clip_algorithm=args.grad_clip_algorithm,
callbacks=[early_stop_callback, checkpoint_callback])
trainer.fit(filler,
train_dataloader=dataset.train_dataloader(batch_size=args.batch_size),
val_dataloaders=dataset.val_dataloader(batch_size=args.batch_size))
########################################
# testing #
########################################
filler.load_state_dict(torch.load(checkpoint_callback.best_model_path,
lambda storage, loc: storage)['state_dict'])
filler.freeze()
trainer.test(filler, test_dataloaders=dataset.test_dataloader(batch_size=args.batch_size))
filler.eval()
if __name__ == '__main__':
args = parse_args()
run_experiment(args)