-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrandom.jl
87 lines (66 loc) · 2.54 KB
/
random.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
## Description #############################################################################
#
# Functions to sample random representations of rotations.
#
## References ##############################################################################
#
# [1] K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems III, pages
# 124-132. Academic, New York, 1992.
#
############################################################################################
# == Euler angle and axis ==================================================================
function Random.rand(rng::AbstractRNG, ::Random.SamplerType{R}) where R <: EulerAngleAxis
T = eltype(R)
if T == Any
T = Float64
end
return quat_to_angleaxis(_rand_quat(rng, T))
end
# == Euler angles ==========================================================================
function Random.rand(rng::AbstractRNG, ::Random.SamplerType{R}) where R <: EulerAngles
T = eltype(R)
if T == Any
T = Float64
end
k = 2 * T(π)
a₁ = k * rand(rng, T)
a₂ = k * rand(rng, T)
a₃ = k * rand(rng, T)
rot_seq = rand(
rng,
(:XYX, :XYZ, :XZX, :XZY, :YXY, :YXZ, :YZX, :YZY, :ZXY, :ZXZ, :ZYX, :ZYZ)
)
return EulerAngles{T}(a₁, a₂, a₃, rot_seq)
end
# == DCM ===================================================================================
function Random.rand(rng::AbstractRNG, ::Random.SamplerType{R}) where R <: DCM
T = eltype(R)
if T == Any
T = Float64
end
return quat_to_dcm(_rand_quat(rng, T))
end
# == Quaternion ============================================================================
function Random.rand(rng::AbstractRNG, ::Random.SamplerType{R}) where R <: Quaternion
T = eltype(R)
if T == Any
T = Float64
end
return _rand_quat(rng, T)
end
############################################################################################
# Private Functions #
############################################################################################
@inline function _rand_quat(rng::AbstractRNG, T::DataType)
# A random unit quaternion is sampled using the algorithm in [1].
k = 2T(π)
u₁ = rand(rng, T)
u₂ = k * rand(rng, T)
u₃ = k * rand(rng, T)
sin_u₂, cos_u₂ = sincos(u₂)
sin_u₃, cos_u₃ = sincos(u₃)
v₁ = √(1 - u₁)
v₂ = √u₁
q = Quaternion(v₁ * sin_u₂, v₁ * cos_u₂, v₂ * sin_u₃, v₂ * cos_u₃)
return q
end