-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_basenet.py
521 lines (434 loc) · 17.6 KB
/
cnn_basenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 17-9-18 下午3:59
# @Author : Luo Yao
# @Site : http://github.com/TJCVRS
# @File : cnn_basenet.py
# @IDE: PyCharm Community Edition
"""
The base convolution neural networks mainly implement some useful cnn functions
"""
import tensorflow as tf
import tensorflow.contrib.layers as tf_layer
import numpy as np
class CNNBaseModel(object):
"""
Base model for other specific cnn ctpn_models
"""
def __init__(self):
pass
@staticmethod
def conv2d(inputdata, out_channel, kernel_size, padding='SAME',
stride=1, w_init=None, b_init=None,
split=1, use_bias=True, data_format='NHWC', name=None):
"""
Packing the tensorflow conv2d function.
:param name: op name
:param inputdata: A 4D tensorflow tensor which ust have known number of channels, but can have other
unknown dimensions.
:param out_channel: number of output channel.
:param kernel_size: int so only support square kernel convolution
:param padding: 'VALID' or 'SAME'
:param stride: int so only support square stride
:param w_init: initializer for convolution weights
:param b_init: initializer for bias
:param split: split channels as used in Alexnet mainly group for GPU memory save.
:param use_bias: whether to use bias.
:param data_format: default set to NHWC according tensorflow
:return: tf.Tensor named ``output``
"""
with tf.variable_scope(name):
in_shape = inputdata.get_shape().as_list()
channel_axis = 3 if data_format == 'NHWC' else 1
in_channel = in_shape[channel_axis]
assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!"
assert in_channel % split == 0
assert out_channel % split == 0
padding = padding.upper()
if isinstance(kernel_size, list):
filter_shape = [kernel_size[0], kernel_size[1]] + [in_channel / split, out_channel]
else:
filter_shape = [kernel_size, kernel_size] + [in_channel / split, out_channel]
if isinstance(stride, list):
strides = [1, stride[0], stride[1], 1] if data_format == 'NHWC' \
else [1, 1, stride[0], stride[1]]
else:
strides = [1, stride, stride, 1] if data_format == 'NHWC' \
else [1, 1, stride, stride]
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
w = tf.get_variable('W', filter_shape, initializer=w_init)
b = None
if use_bias:
b = tf.get_variable('b', [out_channel], initializer=b_init)
if split == 1:
conv = tf.nn.conv2d(inputdata, w, strides, padding, data_format=data_format)
else:
inputs = tf.split(inputdata, split, channel_axis)
kernels = tf.split(w, split, 3)
outputs = [tf.nn.conv2d(i, k, strides, padding, data_format=data_format)
for i, k in zip(inputs, kernels)]
conv = tf.concat(outputs, channel_axis)
ret = tf.identity(tf.nn.bias_add(conv, b, data_format=data_format)
if use_bias else conv, name=name)
return ret
@staticmethod
def relu(inputdata, name=None):
"""
:param name:
:param inputdata:
:return:
"""
return tf.nn.relu(features=inputdata, name=name)
@staticmethod
def sigmoid(inputdata, name=None):
"""
:param name:
:param inputdata:
:return:
"""
return tf.nn.sigmoid(x=inputdata, name=name)
@staticmethod
def maxpooling(inputdata, kernel_size, stride=None, padding='VALID',
data_format='NHWC', name=None):
"""
:param name:
:param inputdata:
:param kernel_size:
:param stride:
:param padding:
:param data_format:
:return:
"""
padding = padding.upper()
if stride is None:
stride = kernel_size
if isinstance(kernel_size, list):
kernel = [1, kernel_size[0], kernel_size[1], 1] if data_format == 'NHWC' else \
[1, 1, kernel_size[0], kernel_size[1]]
else:
kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' \
else [1, 1, kernel_size, kernel_size]
if isinstance(stride, list):
strides = [1, stride[0], stride[1], 1] if data_format == 'NHWC' \
else [1, 1, stride[0], stride[1]]
else:
strides = [1, stride, stride, 1] if data_format == 'NHWC' \
else [1, 1, stride, stride]
return tf.nn.max_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding,
data_format=data_format, name=name)
@staticmethod
def avgpooling(inputdata, kernel_size, stride=None, padding='VALID',
data_format='NHWC', name=None):
"""
:param name:
:param inputdata:
:param kernel_size:
:param stride:
:param padding:
:param data_format:
:return:
"""
if stride is None:
stride = kernel_size
kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' \
else [1, 1, kernel_size, kernel_size]
strides = [1, stride, stride, 1] if data_format == 'NHWC' else [1, 1, stride, stride]
return tf.nn.avg_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding,
data_format=data_format, name=name)
@staticmethod
def globalavgpooling(inputdata, data_format='NHWC', name=None):
"""
:param name:
:param inputdata:
:param data_format:
:return:
"""
assert inputdata.shape.ndims == 4
assert data_format in ['NHWC', 'NCHW']
axis = [1, 2] if data_format == 'NHWC' else [2, 3]
return tf.reduce_mean(input_tensor=inputdata, axis=axis, name=name)
@staticmethod
def layernorm(inputdata, epsilon=1e-5, use_bias=True, use_scale=True,
data_format='NHWC', name=None):
"""
:param name:
:param inputdata:
:param epsilon: epsilon to avoid divide-by-zero.
:param use_bias: whether to use the extra affine transformation or not.
:param use_scale: whether to use the extra affine transformation or not.
:param data_format:
:return:
"""
shape = inputdata.get_shape().as_list()
ndims = len(shape)
assert ndims in [2, 4]
mean, var = tf.nn.moments(inputdata, list(range(1, len(shape))), keep_dims=True)
if data_format == 'NCHW':
channnel = shape[1]
new_shape = [1, channnel, 1, 1]
else:
channnel = shape[-1]
new_shape = [1, 1, 1, channnel]
if ndims == 2:
new_shape = [1, channnel]
if use_bias:
beta = tf.get_variable('beta', [channnel], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
else:
beta = tf.zeros([1] * ndims, name='beta')
if use_scale:
gamma = tf.get_variable('gamma', [channnel], initializer=tf.constant_initializer(1.0))
gamma = tf.reshape(gamma, new_shape)
else:
gamma = tf.ones([1] * ndims, name='gamma')
return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
@staticmethod
def instancenorm(inputdata, epsilon=1e-5, data_format='NHWC', use_affine=True, name=None):
"""
:param name:
:param inputdata:
:param epsilon:
:param data_format:
:param use_affine:
:return:
"""
shape = inputdata.get_shape().as_list()
if len(shape) != 4:
raise ValueError("Input data of instancebn layer has to be 4D tensor")
if data_format == 'NHWC':
axis = [1, 2]
ch = shape[3]
new_shape = [1, 1, 1, ch]
else:
axis = [2, 3]
ch = shape[1]
new_shape = [1, ch, 1, 1]
if ch is None:
raise ValueError("Input of instancebn require known channel!")
mean, var = tf.nn.moments(inputdata, axis, keep_dims=True)
if not use_affine:
return tf.divide(inputdata - mean, tf.sqrt(var + epsilon), name='output')
beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0))
gamma = tf.reshape(gamma, new_shape)
return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
@staticmethod
def dropout(inputdata, keep_prob, noise_shape=None, name=None):
"""
:param name:
:param inputdata:
:param keep_prob:
:param noise_shape:
:return:
"""
return tf.nn.dropout(inputdata, keep_prob=keep_prob, noise_shape=noise_shape, name=name)
@staticmethod
def fullyconnect(inputdata, out_dim, w_init=None, b_init=None,
use_bias=True, name=None):
"""
Fully-Connected layer, takes a N>1D tensor and returns a 2D tensor.
It is an equivalent of `tf.layers.dense` except for naming conventions.
:param inputdata: a tensor to be flattened except for the first dimension.
:param out_dim: output dimension
:param w_init: initializer for w. Defaults to `variance_scaling_initializer`.
:param b_init: initializer for b. Defaults to zero
:param use_bias: whether to use bias.
:param name:
:return: tf.Tensor: a NC tensor named ``output`` with attribute `variables`.
"""
shape = inputdata.get_shape().as_list()[1:]
if None not in shape:
inputdata = tf.reshape(inputdata, [-1, int(np.prod(shape))])
else:
inputdata = tf.reshape(inputdata, tf.stack([tf.shape(inputdata)[0], -1]))
if w_init is None:
# w_init = tf.contrib.layers.variance_scaling_initializer()
w_init = tf.random_normal_initializer(stddev=1.0)
if b_init is None:
b_init = tf.constant_initializer()
ret = tf.layers.dense(inputs=inputdata, activation=lambda x: tf.identity(x, name='output'),
use_bias=use_bias, name=name,
kernel_initializer=w_init, bias_initializer=b_init,
trainable=True, units=out_dim)
return ret
@staticmethod
def layerbn(inputdata, is_training, name):
"""
:param inputdata:
:param is_training:
:param name:
:return:
"""
def f1():
"""
:return:
"""
# print('batch_normalization: train phase')
return tf_layer.batch_norm(
inputdata, is_training=True,
center=True, updates_collections=None,
scope=name, reuse=False)
def f2():
"""
:return:
"""
# print('batch_normalization: test phase')
return tf_layer.batch_norm(
inputdata, is_training=False,
center=True, updates_collections=None,
scope=name, reuse=True)
output = tf.cond(is_training, f1, f2)
return output
@staticmethod
def squeeze(inputdata, axis=None, name=None):
"""
:param inputdata:
:param axis:
:param name:
:return:
"""
return tf.squeeze(input=inputdata, axis=axis, name=name)
@staticmethod
def deconv2d(inputdata, out_channel, kernel_size, padding='SAME',
stride=1, w_init=None, b_init=None,
use_bias=True, activation=None, data_format='channels_last',
trainable=True, name=None):
"""
Packing the tensorflow conv2d function.
:param name: op name
:param inputdata: A 4D tensorflow tensor which ust have known number of channels, but can have other
unknown dimensions.
:param out_channel: number of output channel.
:param kernel_size: int so only support square kernel convolution
:param padding: 'VALID' or 'SAME'
:param stride: int so only support square stride
:param w_init: initializer for convolution weights
:param b_init: initializer for bias
:param activation: whether to apply a activation func to deconv result
:param use_bias: whether to use bias.
:param data_format: default set to NHWC according tensorflow
:return: tf.Tensor named ``output``
"""
with tf.variable_scope(name):
in_shape = inputdata.get_shape().as_list()
channel_axis = 3 if data_format == 'channels_last' else 1
in_channel = in_shape[channel_axis]
assert in_channel is not None, "[Deconv2D] Input cannot have unknown channel!"
padding = padding.upper()
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
ret = tf.layers.conv2d_transpose(inputs=inputdata, filters=out_channel,
kernel_size=kernel_size,
strides=stride, padding=padding,
data_format=data_format,
activation=activation, use_bias=use_bias,
kernel_initializer=w_init,
bias_initializer=b_init, trainable=trainable,
name=name)
return ret
@staticmethod
def dilation_conv(input_tensor, k_size, out_dims, rate, padding='SAME',
w_init=None, b_init=None, use_bias=False, name=None):
"""
:param input_tensor:
:param k_size:
:param out_dims:
:param rate:
:param padding:
:param w_init:
:param b_init:
:param use_bias:
:param name:
:return:
"""
with tf.variable_scope(name):
in_shape = input_tensor.get_shape().as_list()
in_channel = in_shape[3]
assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!"
padding = padding.upper()
if isinstance(k_size, list):
filter_shape = [k_size[0], k_size[1]] + [in_channel, out_dims]
else:
filter_shape = [k_size, k_size] + [in_channel, out_dims]
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
w = tf.get_variable('W', filter_shape, initializer=w_init)
b = None
if use_bias:
b = tf.get_variable('b', [out_dims], initializer=b_init)
conv = tf.nn.atrous_conv2d(value=input_tensor, filters=w, rate=rate,
padding=padding, name='dilation_conv')
if use_bias:
ret = tf.add(conv, b)
else:
ret = conv
return ret
@staticmethod
def spatial_dropout(input_tensor, keep_prob, is_training, name, seed=1234):
"""
空间dropout实现
:param input_tensor:
:param keep_prob:
:param is_training:
:param name:
:param seed:
:return:
"""
tf.set_random_seed(seed=seed)
def f1():
"""
:return:
"""
with tf.variable_scope(name):
return input_tensor
def f2():
"""
:return:
"""
with tf.variable_scope(name):
num_feature_maps = [tf.shape(input_tensor)[0], tf.shape(input_tensor)[3]]
random_tensor = keep_prob
random_tensor += tf.random_uniform(num_feature_maps,
seed=seed,
dtype=input_tensor.dtype)
binary_tensor = tf.floor(random_tensor)
binary_tensor = tf.reshape(binary_tensor,
[-1, 1, 1, tf.shape(input_tensor)[3]])
ret = input_tensor * binary_tensor
return ret
output = tf.cond(is_training, f2, f1)
return output
@staticmethod
def tanh(inputdata, name):
"""
:param inputdata:
:param name:
:return:
"""
return tf.nn.tanh(inputdata, name=name)
@staticmethod
def softplus(inputdata, name):
"""
:param inputdata:
:param name:
:return:
"""
return tf.nn.softplus(inputdata, name=name)
@staticmethod
def lrelu(inputdata, name, alpha=0.2):
"""
:param inputdata:
:param alpha:
:param name:
:return:
"""
with tf.variable_scope(name):
return tf.nn.relu(inputdata) - alpha * tf.nn.relu(-inputdata)