-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathFillthematrix.cpp
196 lines (174 loc) · 3.5 KB
/
Fillthematrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
Fill The Matrix
A matrix B (consisting of integers) of dimension N × N is said to be good if there exists an array A (consisting of integers) such that B[i][j] = |A[i] - A[j]|, where |x| denotes absolute value of integer x.
You are given a partially filled matrix B of dimension N × N. Q of the entries of this matrix are filled by either 0 or 1. You have to identify whether it is possible to fill the remaining entries of matrix B (the entries can be filled by any integer, not necessarily by 0 or 1) such that the resulting fully filled matrix B is good.
Input
The first line of the input contains an integer T denoting the number of test cases.
The first line of each test case contains two space separated integers N, Q.
Each of the next Q lines contain three space separated integers i, j, val, which means that B[i][j] is filled with value val.
Output
For each test case, output "yes" or "no" (without quotes) in a single line corresponding to the answer of the problem.
Constraints
1 ≤ T ≤ 10^6
2 ≤ N ≤ 10^5
1 ≤ Q ≤ 10^6
1 ≤ i, j ≤ N
0 ≤ val ≤ 1
Sum of each of N, Q over all test cases doesn't exceed 106
Input
4
2 2
1 1 0
1 2 1
2 3
1 1 0
1 2 1
2 1 0
3 2
2 2 0
2 3 1
3 3
1 2 1
2 3 1
1 3 1
Output
yes
no
yes
no
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef pair<int,int> ii;
#define fill(a,x) memset(a,x,sizeof(a))
#define pb push_back
#define sz(x) (int)x.size()
#define F first
#define S second
#define FOR(i,a,b) for(int i = a; i<=b; ++i)
#define NFOR(i,a,b) for(int i = a; i>=b; --i)
#define fast ios_base::sync_with_stdio(false),cin.tie(0),cout.tie(0)
const ll INF = 1e18;
const ll mod = 1e9+7;
const int N = 1e5+10;
bool done[N];
int arr[N];
int grp[N];
vi edges[N];
vi zeros[N];
vector<ii> ones;
void dfsz(int s,int p,int g)
{
done[s]=true;
grp[s]=g;
for(int i=0;i<sz(zeros[s]);i++)
{
if(zeros[s][i]==p or done[zeros[s][i]])
continue;
dfsz(zeros[s][i],s,g);
}
}
bool dfs(int s,int p)
{
done[s]=true;
for(int i=0;i<sz(edges[s]);i++)
{
if(edges[s][i]==p)
continue;
if(arr[edges[s][i]]==arr[s])
return false;
if(done[edges[s][i]])
continue;
arr[edges[s][i]]=1-arr[s];
bool check=dfs(edges[s][i],s);
if(check==false)
return false;
}
return true;
}
int main(){
fast;
int t;
cin>>t;
while(t--)
{
ones.clear();
int n,q;
cin>>n>>q;
FOR(i,1,n)
{
edges[i].clear();
zeros[i].clear();
arr[i]=-1;
grp[i]=0;
done[i]=false;
}
bool ans=true;
FOR(k,1,q)
{
int i,j,val;
cin>>i>>j>>val;
if(i==j and val==1)
ans=false;
if(i==j and val==0)
continue;
if(val==0)
{
zeros[i].pb(j);
zeros[j].pb(i);
}
if(val==1)
ones.pb(make_pair(i,j));
}
if(ans==false)
{
cout<<"no"<<endl;
continue;
}
int g=1;
for(int i=1;i<=n;i++)
{
if(!done[i])
{
dfsz(i,0,g);
g++;
}
}
g--;
FOR(i,0,sz(ones)-1)
{
if(grp[ones[i].F]==grp[ones[i].S])
ans=false;
else
{
edges[grp[ones[i].F]].pb(grp[ones[i].S]);
edges[grp[ones[i].S]].pb(grp[ones[i].F]);
}
}
if(ans==false)
{
cout<<"no"<<endl;
continue;
}
for(int i=1;i<=g;i++)
done[i]=false;
for(int i=1;i<=g;i++)
{
if(!done[i])
{
arr[i]=0;
ans=dfs(i,0);
if(ans==false)
{
cout<<"no"<<endl;
break;
}
}
}
if(ans)
cout<<"yes"<<endl;
}
return 0;
}