-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathKnapsack.cpp
66 lines (51 loc) · 1.28 KB
/
Knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
Name: Mehul Chaturvedi
IIT-Guwahati
*/
/*
A thief robbing a store and can carry a maximal weight of W into his knapsack. There are N items and ith item weigh wi and is of value vi. What is the maximum value V, that thief can take ?
Space complexity should be O(n).
Input Format :
Line 1 : N i.e. number of items
Line 2 : N Integers i.e. weights of items separated by space
Line 3 : N Integers i.e. values of items separated by space
Line 4 : Integer W i.e. maximum weight thief can carry
Output Format :
Line 1 : Maximum value V
Constraints
1 <= N <= 10^4
1<= wi <= 100
1 <= vi <= 100
Sample Input 1 :
4
1 2 4 5
5 4 8 6
5
Sample Output :
13
*/
#include <bits/stdc++.h>
using namespace std;
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n+1][W+1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
K[i][w] = 0;
else if (wt[i-1] <= w)
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
else
K[i][w] = K[i-1][w];
}
}
return K[n][W];
}
int knapsack(int* weights, int* values, int n, int maxWeight){
return knapSack(maxWeight, weights, values, n);
}
}