-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy path3-zero-sum.cpp
56 lines (46 loc) · 1.32 KB
/
3-zero-sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*
Name: Mehul Chaturvedi
IIT-Guwahati
*/
/*
PROBLEM STATEMENT
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0?
Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets. For example, given array S = {-1 0 1 2 -1 -4}, A solution set is:
(-1, 0, 1)
(-1, -1, 2)
*/
#include <bits/stdc++.h>
using namespace std;
vector<vector<int> > threeSum(vector<int> &A) {
sort(A.begin(), A.end());
int n = A.size();
vector<vector<int> > result;
int c = 0;
for (auto i = 0; i<n-2; ++i)
{
int l = i+1; int r = n-1;
if (i>0 && A[i]==A[i-1])
continue;
while(l<r)
{
auto sum = A[i]+A[l]+A[r];
if(sum==0)
{
vector<int> temp = {A[i], A[l], A[r]};
int s = result.size();
if(s>0 && result[s-1][0]==temp[0] && result[s-1][1]==temp[1] && result[s-1][2]==temp[2]);
else
result.push_back(temp);
++l; --r;
}
else if(sum>0)
--r;
else
++l;
}
}
return result;
}