-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathnonlinearsolvers.py
203 lines (166 loc) · 8.02 KB
/
nonlinearsolvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from ngsolve.la import InnerProduct
from math import sqrt
from ngsolve import Projector, Norm
from .utils import TimeFunction
class NewtonSolver:
def __init__(self, a, u, rhs=None, freedofs=None,
inverse="", solver=None, lin_solver_cls=None,
lin_solver_args=None):
self.a, self.u, self.inverse = a, u, inverse
self.w = u.vec.CreateVector()
self.r = u.vec.CreateVector()
self.rhs = rhs
self.uh = u.vec.CreateVector()
self.inv = None if solver is None else solver
self.lin_solver_cls = lin_solver_cls
self.lin_solver_args = lin_solver_args
if lin_solver_cls is not None:
assert solver is None
if solver or lin_solver_cls:
self.inverse = "given"
else:
self.freedofs = freedofs or u.space.FreeDofs(a.condense)
@TimeFunction
def Solve(self, maxit=100, maxerr=1e-11, dampfactor=1,
printing=False, callback=None, linesearch=False,
printenergy=False, print_wrong_direction=False):
numit = 0
err = 1.
a, u, w, r,uh = self.a, self.u, self.w, self.r, self.uh
for it in range(maxit):
numit += 1
if printing:
print("Newton iteration ", it)
if printenergy:
print("Energy: ", a.Energy(u.vec))
a.AssembleLinearization(u.vec)
a.Apply(u.vec, r)
self._UpdateInverse()
if self.rhs is not None:
r.data -= self.rhs.vec
if a.condense:
r.data += a.harmonic_extension_trans * r
w.data = self.inv * r
w.data += a.harmonic_extension * w
w.data += a.inner_solve * r
else:
w.data = self.inv * r
err2 = InnerProduct(w,r)
if print_wrong_direction:
if err2 < 0:
print("wrong direction")
err = sqrt(abs(err2))
if printing:
print("err = ", err)
tau = min(1, numit*dampfactor)
if linesearch:
uh.data = u.vec - tau*w
energy = a.Energy(u.vec)
while a.Energy(uh) > energy+(max(1e-14*abs(energy),maxerr)) and tau > 1e-10:
tau *= 0.5
uh.data = u.vec - tau * w
if printing:
print ("tau = ", tau)
print ("energy uh = ", a.Energy(uh))
u.vec.data = uh
else:
u.vec.data -= tau * w
if callback is not None:
callback(it, err)
if abs(err) < maxerr: break
else:
print("Warning: Newton might not converge! Error = ", err)
return (-1,numit)
return (0,numit)
def SetDirichlet(self, dirichletvalues):
a, u, w, r = self.a, self.u, self.w, self.r
a.AssembleLinearization(u.vec)
self._UpdateInverse()
w.data = dirichletvalues-u.vec
r.data = a.mat * w
w.data -= self.inv*r
u.vec.data += w
def _UpdateInverse(self):
if self.inverse == "given":
if self.lin_solver_cls is not None and self.inv is None:
self.inv = self.lin_solver_cls(mat=self.a.mat, **(self.lin_solver_args or {}))
else:
self.inv.Update()
else:
if self.inverse == "sparsecholesky" and self.inv is not None:
self.inv.Update()
else:
self.inv = self.a.mat.Inverse(self.freedofs,
inverse=self.inverse)
def Newton(a, u, freedofs=None, maxit=100, maxerr=1e-11, inverse="", \
dirichletvalues=None, dampfactor=1, printing=True, callback=None):
"""
Newton's method for solving non-linear problems of the form A(u)=0.
Parameters
----------
a : BilinearForm
The BilinearForm of the non-linear variational problem. It does not have to be assembled.
u : GridFunction
The GridFunction where the solution is saved. The values are used as initial guess for Newton's method.
freedofs : BitArray
The FreeDofs on which the assembled matrix is inverted. If argument is 'None' then the FreeDofs of the underlying FESpace is used.
maxit : int
Number of maximal iteration for Newton. If the maximal number is reached before the maximal error Newton might no converge and a warning is displayed.
maxerr : float
The maximal error which Newton should reach before it stops. The error is computed by the square root of the inner product of the residuum and the correction.
inverse : string
A string of the sparse direct solver which should be solved for inverting the assembled Newton matrix.
dampfactor : float
Set the damping factor for Newton's method. If dampfactor is 1 then no damping is done. If value is < 1 then the damping is done by the formula 'min(1,dampfactor*numit)' for the correction, where 'numit' denotes the Newton iteration.
printing : bool
Set if Newton's method should print informations about the actual iteration like the error.
Returns
-------
(int, int)
List of two integers. The first one is 0 if Newton's method did converge, -1 otherwise. The second one gives the number of Newton iterations needed.
"""
solver = NewtonSolver(a=a, u=u, freedofs=freedofs, inverse=inverse)
if dirichletvalues is not None:
solver.SetDirichlet(dirichletvalues)
return solver.Solve(maxit=maxit, maxerr=maxerr,
dampfactor=dampfactor,
printing=printing,
callback=callback,
linesearch=False,
printenergy=False)
def NewtonMinimization(a, u, freedofs=None, maxit=100, maxerr=1e-11, inverse="", dampfactor=1, linesearch=False, printing=True, callback=None):
"""
Newton's method for solving non-linear problems of the form A(u)=0 involving energy integrators.
Parameters
----------
a : BilinearForm
The BilinearForm of the non-linear variational problem. It does not have to be assembled.
u : GridFunction
The GridFunction where the solution is saved. The values are used as initial guess for Newton's method.
freedofs : BitArray
The FreeDofs on which the assembled matrix is inverted. If argument is 'None' then the FreeDofs of the underlying FESpace is used.
maxit : int
Number of maximal iteration for Newton. If the maximal number is reached before the maximal error Newton might no converge and a warning is displayed.
maxerr : float
The maximal error which Newton should reach before it stops. The error is computed by the square root of the inner product of the residuum and the correction.
inverse : string
A string of the sparse direct solver which should be solved for inverting the assembled Newton matrix.
dampfactor : float
Set the damping factor for Newton's method. If dampfactor is 1 then no damping is done. If value is < 1 then the damping is done by the formula 'min(1,dampfactor*numit)' for the correction, where 'numit' denotes the Newton iteration.
linesearch : bool
If True then linesearch is used to guarantee that the energy decreases in every Newton iteration.
printing : bool
Set if Newton's method should print informations about the actual iteration like the error.
Returns
-------
(int, int)
List of two integers. The first one is 0 if Newton's method did converge, -1 otherwise. The second one gives the number of Newton iterations needed.
"""
solver = NewtonSolver(a=a, u=u, freedofs=freedofs, inverse=inverse)
return solver.Solve(maxit=maxit, maxerr=maxerr,
dampfactor=dampfactor,
printing=printing,
callback=callback,
linesearch=linesearch,
printenergy=printing,
print_wrong_direction=False)