|
| 1 | +# Author: OMKAR PATHAK |
| 2 | + |
| 3 | +# This example shows various array manipulation operations |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +# numpy.reshape(array_to_reshape, tuple_of_new_shape) gives new shape (dimension) to our array |
| 7 | +myArray = np.arange(0, 30, 2) |
| 8 | +print(myArray) # [ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28] |
| 9 | + |
| 10 | +myArrayReshaped = myArray.reshape(5, 3) |
| 11 | +print(myArrayReshaped) |
| 12 | + |
| 13 | +# [[ 0 2 4] |
| 14 | +# [ 6 8 10] |
| 15 | +# [12 14 16] |
| 16 | +# [18 20 22] |
| 17 | +# [24 26 28]] |
| 18 | + |
| 19 | +# numpy.ndarray.flat() returns an 1-D iterator |
| 20 | +print(myArray.flat[5]) # 10 |
| 21 | + |
| 22 | +# numpy.ndarray.flatten() restores the reshaped array into a 1-D array |
| 23 | +print(myArrayReshaped.flatten()) |
| 24 | + |
| 25 | +# numpy.tranpose() this helps to find the tranpose of the given array |
| 26 | +print(myArrayReshaped.transpose()) |
| 27 | + |
| 28 | +# [[ 0 6 12 18 24] |
| 29 | +# [ 2 8 14 20 26] |
| 30 | +# [ 4 10 16 22 28]] |
| 31 | + |
| 32 | +# numpy.swapaxes(array, axis1, axis2) interchanges the two axes of an array |
| 33 | +originalArray = np.arange(8).reshape(2,2,2) |
| 34 | +print(originalArray) |
| 35 | + |
| 36 | +# [[[0 1] |
| 37 | +# [2 3]] |
| 38 | +# |
| 39 | +# [[4 5] |
| 40 | +# [6 7]]] |
| 41 | + |
| 42 | +print(np.swapaxes(originalArray, 2, 0)) |
| 43 | + |
| 44 | +# [[[0 4] |
| 45 | +# [2 6]] |
| 46 | +# |
| 47 | +# [[1 5] |
| 48 | +# [3 7]]] |
| 49 | + |
| 50 | +# numpy.rollaxis(arr, axis, start) rolls the specified axis backwards, until it lies in a specified position |
| 51 | +print(np.rollaxis(originalArray, 2)) |
| 52 | + |
| 53 | +# [[[0 2] |
| 54 | +# [4 6]] |
| 55 | +# |
| 56 | +# [[1 3] |
| 57 | +# [5 7]]] |
| 58 | + |
| 59 | +# numpy.resize(arr, shape) returns a new array with the specified size. If the new size is greater than |
| 60 | +# the original, the repeated copies of entries in the original are contained |
| 61 | + |
| 62 | +myArray = np.array([[1,2,3],[4,5,6]]) |
| 63 | +print(myArray) |
| 64 | + |
| 65 | +# [[1 2 3] |
| 66 | +# [4 5 6]] |
| 67 | + |
| 68 | +print(np.resize(myArray, (3, 2))) |
| 69 | + |
| 70 | +# [[1 2] |
| 71 | +# [3 4] |
| 72 | +# [5 6]] |
| 73 | + |
| 74 | +# numpy.append(array, values, axis) |
| 75 | +myArray = np.array([[1,2,3],[4,5,6]]) |
| 76 | +print(myArray) |
| 77 | + |
| 78 | +# [[1 2 3] |
| 79 | +# [4 5 6]] |
| 80 | + |
| 81 | +print(np.append(myArray, [7, 8, 9])) |
| 82 | + |
| 83 | +# [1 2 3 4 5 6 7 8 9] |
0 commit comments