-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathtest_cspmv.c
428 lines (369 loc) · 12.3 KB
/
test_cspmv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*****************************************************************************
Copyright (c) 2023, The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************************/
#include "utest/openblas_utest.h"
#include "common.h"
#define DATASIZE 100
#define INCREMENT 2
struct DATA_CSPMV {
float a_verify[DATASIZE * DATASIZE * 2];
float a_test[DATASIZE * (DATASIZE + 1)];
float b_test[DATASIZE * 2 * INCREMENT];
float c_test[DATASIZE * 2 * INCREMENT];
float c_verify[DATASIZE * 2 * INCREMENT];
};
#ifdef BUILD_COMPLEX
static struct DATA_CSPMV data_cspmv;
/**
* Compute spmv via gemv since spmv is gemv for symmetric packed matrix
*
* param uplo specifies whether matrix A is upper or lower triangular
* param n - number of rows and columns of A
* param alpha - scaling factor for the matrix-vector product
* param a - buffer holding input matrix A
* param b - Buffer holding input vector b
* param inc_b - stride of vector b
* param beta - scaling factor for vector c
* param c - buffer holding input/output vector c
* param inc_c - stride of vector c
* output param data_cspmv.c_verify - matrix computed by gemv
*/
static void cspmv_trusted(char uplo, blasint n, float *alpha, float *a,
float *b, blasint inc_b, float *beta, float *c,
blasint inc_c)
{
blasint k;
blasint i, j;
// param for gemv (can use any, since the input matrix is symmetric)
char trans = 'N';
// Unpack the input symmetric packed matrix
if (uplo == 'L')
{
k = 0;
for (i = 0; i < n; i++)
{
for (j = 0; j < n * 2; j += 2)
{
if (j / 2 < i)
{
data_cspmv.a_verify[i * n * 2 + j] =
data_cspmv.a_verify[j * n + i * 2];
data_cspmv.a_verify[i * n * 2 + j + 1] =
data_cspmv.a_verify[j * n + i * 2 + 1];
}
else
{
data_cspmv.a_verify[i * n * 2 + j] = a[k++];
data_cspmv.a_verify[i * n * 2 + j + 1] = a[k++];
}
}
}
}
else
{
k = n * (n + 1) - 1;
for (j = 2 * n - 1; j >= 0; j -= 2)
{
for (i = n - 1; i >= 0; i--)
{
if (j / 2 < i)
{
data_cspmv.a_verify[i * n * 2 + j] =
data_cspmv.a_verify[(j - 1) * n + i * 2 + 1];
data_cspmv.a_verify[i * n * 2 + j - 1] =
data_cspmv.a_verify[(j - 1) * n + i * 2];
}
else
{
data_cspmv.a_verify[i * n * 2 + j] = a[k--];
data_cspmv.a_verify[i * n * 2 + j - 1] = a[k--];
}
}
}
}
// Run gemv with the unpacked matrix
BLASFUNC(cgemv)(&trans, &n, &n, alpha, data_cspmv.a_verify, &n, b,
&inc_b, beta, data_cspmv.c_verify, &inc_c);
}
/**
* Comapare results computed by cspmv and cspmv_trusted
*
* param uplo specifies whether matrix A is upper or lower triangular
* param n - number of rows and columns of A
* param alpha - scaling factor for the matrix-vector product
* param inc_b - stride of vector b
* param beta - scaling factor for vector c
* param inc_c - stride of vector c
* return norm of differences
*/
static float check_cspmv(char uplo, blasint n, float *alpha, blasint inc_b,
float *beta, blasint inc_c)
{
blasint i;
// Fill symmetric packed maxtix a, vectors b and c
srand_generate(data_cspmv.a_test, n * (n + 1));
srand_generate(data_cspmv.b_test, 2 * n * inc_b);
srand_generate(data_cspmv.c_test, 2 * n * inc_c);
// Copy vector c for cspmv_trusted
for (i = 0; i < n * 2 * inc_c; i++)
data_cspmv.c_verify[i] = data_cspmv.c_test[i];
cspmv_trusted(uplo, n, alpha, data_cspmv.a_test, data_cspmv.b_test,
inc_b, beta, data_cspmv.c_verify, inc_c);
BLASFUNC(cspmv)(&uplo, &n, alpha, data_cspmv.a_test, data_cspmv.b_test,
&inc_b, beta, data_cspmv.c_test, &inc_c);
// Find the differences between output vector computed by cspmv and cspmv_trusted
for (i = 0; i < n * 2 * inc_c; i++)
data_cspmv.c_test[i] -= data_cspmv.c_verify[i];
// Find the norm of differences
return BLASFUNC(scnrm2)(&n, data_cspmv.c_test, &inc_c);
}
/**
* Check if error function was called with expected function name
* and param info
*
* param uplo specifies whether matrix A is upper or lower triangular
* param n - number of rows and columns of A
* param inc_b - stride of vector b
* param inc_c - stride of vector c
* param expected_info - expected invalid parameter number in cspmv
* return TRUE if everything is ok, otherwise FALSE
*/
static int check_badargs(char uplo, blasint n, blasint inc_b,
blasint inc_c, int expected_info)
{
float alpha[] = {1.0, 1.0};
float beta[] = {0.0, 0.0};
set_xerbla("CSPMV ", expected_info);
BLASFUNC(cspmv)(&uplo, &n, alpha, data_cspmv.a_test, data_cspmv.b_test,
&inc_b, beta, data_cspmv.c_test, &inc_c);
return check_error();
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is upper triangular
* Number of rows and columns of A is 100
* Stride of vector b is 1
* Stride of vector c is 1
*/
CTEST(cspmv, upper_inc_b_1_inc_c_1_N_100)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 1;
char uplo = 'U';
float alpha[] = {1.0f, 1.0f};
float beta[] = {0.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is upper triangular
* Number of rows and columns of A is 100
* Stride of vector b is 1
* Stride of vector c is 2
*/
CTEST(cspmv, upper_inc_b_1_inc_c_2_N_100)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 2;
char uplo = 'U';
float alpha[] = {1.0f, 1.0f};
float beta[] = {0.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is upper triangular
* Number of rows and columns of A is 100
* Stride of vector b is 2
* Stride of vector c is 1
*/
CTEST(cspmv, upper_inc_b_2_inc_c_1_N_100)
{
blasint N = DATASIZE, inc_b = 2, inc_c = 1;
char uplo = 'U';
float alpha[] = {1.0f, 0.0f};
float beta[] = {1.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is upper triangular
* Number of rows and columns of A is 100
* Stride of vector b is 2
* Stride of vector c is 2
*/
CTEST(cspmv, upper_inc_b_2_inc_c_2_N_100)
{
blasint N = DATASIZE, inc_b = 2, inc_c = 2;
char uplo = 'U';
float alpha[] = {2.5, -2.1};
float beta[] = {0.0f, 1.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is lower triangular
* Number of rows and columns of A is 100
* Stride of vector b is 1
* Stride of vector c is 1
*/
CTEST(cspmv, lower_inc_b_1_inc_c_1_N_100)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 1;
char uplo = 'L';
float alpha[] = {1.0f, 1.0f};
float beta[] = {0.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is lower triangular
* Number of rows and columns of A is 100
* Stride of vector b is 1
* Stride of vector c is 2
*/
CTEST(cspmv, lower_inc_b_1_inc_c_2_N_100)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 2;
char uplo = 'L';
float alpha[] = {1.0f, 1.0f};
float beta[] = {0.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is lower triangular
* Number of rows and columns of A is 100
* Stride of vector b is 2
* Stride of vector c is 1
*/
CTEST(cspmv, lower_inc_b_2_inc_c_1_N_100)
{
blasint N = DATASIZE, inc_b = 2, inc_c = 1;
char uplo = 'L';
float alpha[] = {1.0f, 0.0f};
float beta[] = {1.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Test cspmv by comparing it against cgemv
* with the following options:
*
* A is lower triangular
* Number of rows and columns of A is 100
* Stride of vector b is 2
* Stride of vector c is 2
*/
CTEST(cspmv, lower_inc_b_2_inc_c_2_N_100)
{
blasint N = DATASIZE, inc_b = 2, inc_c = 2;
char uplo = 'L';
float alpha[] = {2.5, -2.1};
float beta[] = {0.0f, 1.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_DBL_NEAR_TOL(0.0f, norm, SINGLE_TOL);
}
/**
* Check if output matrix A contains any NaNs
*/
CTEST(cspmv, check_for_NaN)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 1;
char uplo = 'U';
float alpha[] = {1.0f, 1.0f};
float beta[] = {0.0f, 0.0f};
float norm = check_cspmv(uplo, N, alpha, inc_b, beta, inc_c);
ASSERT_TRUE(norm == norm); /* NaN == NaN is false */
}
/**
* Test error function for an invalid param uplo.
* uplo specifies whether A is upper or lower triangular.
*/
CTEST(cspmv, xerbla_uplo_invalid)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 1;
char uplo = 'O';
int expected_info = 1;
int passed = check_badargs(uplo, N, inc_b, inc_c, expected_info);
ASSERT_EQUAL(TRUE, passed);
}
/**
* Test error function for an invalid param N -
* number of rows and columns of A. Must be at least zero.
*/
CTEST(cspmv, xerbla_N_invalid)
{
blasint N = INVALID, inc_b = 1, inc_c = 1;
char uplo = 'U';
int expected_info = 2;
int passed = check_badargs(uplo, N, inc_b, inc_c, expected_info);
ASSERT_EQUAL(TRUE, passed);
}
/**
* Test error function for an invalid param inc_b -
* stride of vector b. Can't be zero.
*/
CTEST(cspmv, xerbla_inc_b_zero)
{
blasint N = DATASIZE, inc_b = 0, inc_c = 1;
char uplo = 'U';
int expected_info = 6;
int passed = check_badargs(uplo, N, inc_b, inc_c, expected_info);
ASSERT_EQUAL(TRUE, passed);
}
/**
* Test error function for an invalid param inc_c -
* stride of vector c. Can't be zero.
*/
CTEST(cspmv, xerbla_inc_c_zero)
{
blasint N = DATASIZE, inc_b = 1, inc_c = 0;
char uplo = 'U';
int expected_info = 9;
int passed = check_badargs(uplo, N, inc_b, inc_c, expected_info);
ASSERT_EQUAL(TRUE, passed);
}
#endif