-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathbenchmark_ppocr_cls.cc
executable file
·78 lines (74 loc) · 3.1 KB
/
benchmark_ppocr_cls.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
DEFINE_string(trt_shape, "1,3,48,10:4,3,48,320:8,3,48,1024",
"Set min/opt/max shape for trt/paddle_trt backend."
"eg:--trt_shape 1,3,48,10:4,3,48,320:8,3,48,1024");
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
std::unordered_map<std::string, std::string> config_info;
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
&config_info);
std::string model_name, params_name, config_name;
auto model_format = fastdeploy::ModelFormat::PADDLE;
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
&model_format, config_info, false)) {
return -1;
}
// Classification Model
auto model_file = FLAGS_model + sep + model_name;
auto params_file = FLAGS_model + sep + params_name;
if (config_info["backend"] == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
if (config_info["backend"] == "paddle_trt" ||
config_info["backend"] == "trt") {
std::vector<std::vector<int32_t>> trt_shapes =
benchmark::ResultManager::GetInputShapes(FLAGS_trt_shape);
option.trt_option.SetShape("x", trt_shapes[0], trt_shapes[1],
trt_shapes[2]);
}
auto model_ppocr_cls =
vision::ocr::Classifier(model_file, params_file, option, model_format);
int32_t res_label;
float res_score;
if (config_info["precision_compare"] == "true") {
// Run once at least
model_ppocr_cls.Predict(im, &res_label, &res_score);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
int32_t res_label_expect = 0;
float res_score_expect = 1.0;
// Calculate diff between two results.
auto ppocr_cls_label_diff = res_label - res_label_expect;
auto ppocr_cls_score_diff = res_score - res_score_expect;
std::cout << "PPOCR Cls label diff: " << ppocr_cls_label_diff << std::endl;
std::cout << "PPOCR Cls score diff: " << abs(ppocr_cls_score_diff)
<< std::endl;
}
BENCHMARK_MODEL(model_ppocr_cls,
model_ppocr_cls.Predict(im, &res_label, &res_score));
#endif
return 0;
}