-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathbenchmark_structurev2_layout.cc
93 lines (88 loc) · 3.85 KB
/
benchmark_structurev2_layout.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
std::unordered_map<std::string, std::string> config_info;
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
&config_info);
std::string model_name, params_name, config_name;
auto model_format = fastdeploy::ModelFormat::PADDLE;
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
&model_format, config_info, false)) {
return -1;
}
auto model_file = FLAGS_model + sep + model_name;
auto params_file = FLAGS_model + sep + params_name;
if (config_info["backend"] == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
if (config_info["backend"] == "paddle_trt" ||
config_info["backend"] == "trt") {
option.trt_option.SetShape("image", {1, 3, 800, 608}, {1, 3, 800, 608},
{1, 3, 800, 608});
}
auto layout_model = vision::ocr::StructureV2Layout(model_file, params_file,
option, model_format);
// 5 for publaynet, 10 for cdla
layout_model.GetPostprocessor().SetNumClass(5);
vision::DetectionResult res;
if (config_info["precision_compare"] == "true") {
// Run once at least
layout_model.Predict(im, &res);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
// Save result to -> disk.
std::string layout_result_path = "layout_result.txt";
benchmark::ResultManager::SaveDetectionResult(res, layout_result_path);
// Load result from <- disk.
vision::DetectionResult res_loaded;
benchmark::ResultManager::LoadDetectionResult(&res_loaded,
layout_result_path);
// Calculate diff between two results.
auto det_diff =
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
<< ", max=" << det_diff.boxes.max
<< ", min=" << det_diff.boxes.min << std::endl;
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
<< ", max=" << det_diff.labels.max
<< ", min=" << det_diff.labels.min << std::endl;
}
// Run profiling
BENCHMARK_MODEL(layout_model, layout_model.Predict(im, &res))
std::vector<std::string> labels = {"text", "title", "list", "table",
"figure"};
if (layout_model.GetPostprocessor().GetNumClass() == 10) {
labels = {"text", "title", "figure", "figure_caption",
"table", "table_caption", "header", "footer",
"reference", "equation"};
}
auto vis_im =
vision::VisDetection(im, res, labels, 0.3, 2, .5f, {255, 0, 0}, 2);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}