Skip to content

Files

Latest commit

7c9bf11 · Feb 7, 2023

History

History

python

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jan 6, 2023
Jan 6, 2023
Nov 11, 2022
Sep 23, 2022
Sep 23, 2022
Sep 14, 2022
Sep 14, 2022
Nov 28, 2022
Nov 8, 2022
Feb 7, 2023

English | 简体中文

Python Inference

Before running demo, the following two steps need to be confirmed:

This document shows an inference example on the CPU using the PaddleClas classification model MobileNetV2 as an example.

1. Obtaining the model

import fastdeploy as fd

model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")

2. Backend Configuration

option = fd.RuntimeOption()

option.set_model_path("mobilenetv2/inference.pdmodel",
                      "mobilenetv2/inference.pdiparams")

# **** CPU Configuration ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)

# Initialise runtime
runtime = fd.Runtime(option)

# Get model input name
input_name = runtime.get_input_info(0).name

# Constructing random data for inference
results = runtime.infer({
    input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})

print(results[0].shape)

When loading is complete, you will get the following output information indicating the initialized backend and the hardware devices.

[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init	Runtime initialized with Backend::OrtBackend in device Device::CPU.

Other Documents