-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathpaddle2onnx_optimizer.cc
240 lines (219 loc) · 9.09 KB
/
paddle2onnx_optimizer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/optimizer/paddle2onnx_optimizer.h"
#include <onnx/shape_inference/implementation.h>
#include <fstream>
#include "onnxoptimizer/optimize.h"
#include "paddle2onnx/optimizer/eliminate_non_transpose.h"
#include "paddle2onnx/optimizer/fuse_constant_cast.h"
#include "paddle2onnx/optimizer/fuse_constant_reshape.h"
#include "paddle2onnx/optimizer/fuse_constant_unsqueeze.h"
#include "paddle2onnx/optimizer/fuse_paddle_conv_bias.h"
#include "paddle2onnx/optimizer/fuse_unsqueeze_conv2d_squeeze.h"
#include "paddle2onnx/optimizer/replace_add_to_identity.h"
#include "paddle2onnx/optimizer/replace_mul_to_identity.h"
#include "paddle2onnx/utils/utils.h"
#include "paddle2onnx/converter.h"
namespace ONNX_NAMESPACE {
namespace optimization {
ONNX_NAMESPACE::ModelProto OptimizeOnnxModel(
const ONNX_NAMESPACE::ModelProto& model_proto) {
OptimizerOption option;
option.passes.clear();
option.passes.push_back("eliminate_identity");
option.passes.push_back("eliminate_deadend");
auto optimized_model_proto =
ONNX_NAMESPACE::optimization::Optimize(model_proto, option.passes);
// reinfer shape for this onnx model
auto graph = optimized_model_proto.mutable_graph();
// clear all the type info of outputs
auto output_size = graph->output_size();
for (size_t i = 0; i < output_size; ++i) {
graph->mutable_output(i)->clear_type();
}
try {
shape_inference::InferShapes(optimized_model_proto);
} catch (const std::exception& e) {
P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model."
<< std::endl;
P2OLogger(true) << e.what() << std::endl;
}
return optimized_model_proto;
}
std::shared_ptr<ONNX_NAMESPACE::ModelProto> LoadModelFromFile(
const std::string& file_path) {
auto model_proto = std::make_shared<ONNX_NAMESPACE::ModelProto>();
std::ifstream fin(file_path, std::ios::in | std::ios::binary);
if (!fin.is_open()) {
P2OLogger(true)
<< "Failed to read model file: " << file_path
<< ", please make sure your model file or file path is valid."
<< std::endl;
return model_proto;
}
std::string contents;
fin.seekg(0, std::ios::end);
contents.clear();
contents.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(contents.at(0)), contents.size());
fin.close();
if (!model_proto->ParseFromString(contents)) {
P2OLogger(true) << "Failed to load ONNX model from file." << std::endl;
return model_proto;
}
return model_proto;
}
bool OptimizePaddle2ONNX(const std::string& model_path,
const std::string& optimized_model_path,
const OptimizerOption& option) {
auto model_proto = LoadModelFromFile(model_path);
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantReshape>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantUnsqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FusePaddleConvBias>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseUnsqueezeConv2dSqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::EliminateNonTranspose>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantCast>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceMulToIdentity>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceAddToIdentity>();
auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(
*(model_proto.get()), option.passes);
std::string optimized_model_str;
if (!optimized_model_proto.SerializeToString(&optimized_model_str)) {
P2OLogger(true) << "Failed to serialize the optimized model protobuf."
<< std::endl;
return false;
}
std::fstream out(optimized_model_path, std::ios::out | std::ios::binary);
if (!out) {
P2OLogger(true) << "Failed to write the optimized model to disk at "
<< optimized_model_path << "." << std::endl;
return false;
}
out << optimized_model_str;
out.close();
return true;
}
bool OptimizePaddle2ONNX(
const std::string& model_path, const std::string& optimized_model_path,
const std::map<std::string, std::vector<int>>& shape_infos,
const OptimizerOption& option) {
auto model_proto = LoadModelFromFile(model_path);
if (shape_infos.size() > 0) {
// reinfer shape for this onnx model
auto graph = model_proto->mutable_graph();
// clear all the type info of outputs
auto output_size = graph->output_size();
for (size_t i = 0; i < output_size; ++i) {
graph->mutable_output(i)->clear_type();
}
// reset type info of inputs
auto input_size = graph->input_size();
for (size_t i = 0; i < input_size; ++i) {
auto input_name = graph->input(i).name();
auto iter = shape_infos.find(input_name);
if (iter != shape_infos.end()) {
auto tensor_type_proto =
graph->mutable_input(i)->mutable_type()->mutable_tensor_type();
tensor_type_proto->clear_shape();
auto shape = tensor_type_proto->mutable_shape();
for (auto& dim : iter->second) {
shape->add_dim()->set_dim_value(dim);
}
}
}
try {
shape_inference::InferShapes(*(model_proto.get()));
} catch (const std::exception& e) {
P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model."
<< std::endl;
P2OLogger(true) << e.what() << std::endl;
return false;
}
}
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantReshape>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantUnsqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FusePaddleConvBias>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseUnsqueezeConv2dSqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::EliminateNonTranspose>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantCast>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceMulToIdentity>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceAddToIdentity>();
auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(
*(model_proto.get()), option.passes);
std::string optimized_model_str;
if (!optimized_model_proto.SerializeToString(&optimized_model_str)) {
P2OLogger(true) << "Failed to serialize the optimized model protobuf."
<< std::endl;
return false;
}
std::fstream out(optimized_model_path, std::ios::out | std::ios::binary);
if (!out) {
P2OLogger(true) << "Failed to write the optimized model to disk at "
<< optimized_model_path << "." << std::endl;
return false;
}
out << optimized_model_str;
out.close();
return true;
}
bool Paddle2ONNXFP32ToFP16(const std::string& model_path,
const std::string& converted_model_path) {
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
if (!fin.is_open()) {
P2OLogger(true)
<< "Failed to read model file: " << model_path
<< ", please make sure your model file or file path is valid."
<< std::endl;
return false;
}
std::string contents;
fin.seekg(0, std::ios::end);
contents.clear();
contents.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(contents.at(0)), contents.size());
fin.close();
char* out_model_ptr = nullptr;
int size = 0;
ConvertFP32ToFP16(contents.c_str(), contents.size(), &out_model_ptr, &size);
std::string onnx_proto(out_model_ptr, out_model_ptr + size);
std::fstream out(converted_model_path, std::ios::out | std::ios::binary);
if (!out) {
P2OLogger(true) << "Failed to write the optimized model to disk at "
<< converted_model_path << "." << std::endl;
return false;
}
out << onnx_proto;
out.close();
return true;
}
} // namespace optimization
} // namespace ONNX_NAMESPACE