-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathcompare_with_gt.py
155 lines (139 loc) · 5.3 KB
/
compare_with_gt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import re
diff_score_threshold = {
"linux-x64": {
"label_diff": 0,
"score_diff": 1e-4,
"boxes_diff_ratio": 1e-4,
"boxes_diff": 1e-3
},
"linux-aarch64": {
"label_diff": 0,
"score_diff": 1e-4,
"boxes_diff_ratio": 1e-4,
"boxes_diff": 1e-3
},
"osx-x86_64": {
"label_diff": 0,
"score_diff": 1e-4,
"boxes_diff_ratio": 2e-4,
"boxes_diff": 1e-3
},
"osx-arm64": {
"label_diff": 0,
"score_diff": 1e-3,
"boxes_diff_ratio": 5e-4,
"boxes_diff": 1e-3
},
"win-x64": {
"label_diff": 0,
"score_diff": 5e-4,
"boxes_diff_ratio": 1e-3,
"boxes_diff": 1e-3
}
}
def all_sort(x):
x1 = x.T
y = np.split(x1, len(x1))
z = list(reversed(y))
index = np.lexsort(z)
return np.squeeze(x[index])
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--gt_path",
type=str,
required=True,
help="Path of ground truth result path.")
parser.add_argument(
"--result_path",
type=str,
required=True,
help="Path of inference result path.")
parser.add_argument(
"--platform", type=str, required=True, help="Testcase platform.")
parser.add_argument(
"--device", type=str, required=True, help="Testcase device.")
parser.add_argument(
"--conf_threshold",
type=float,
required=False,
default=0,
help="The threshold to filter inference result.")
args = parser.parse_args()
return args
def convert2numpy(result_file, conf_threshold):
result = []
with open(result_file, "r+") as f:
for line in f.readlines():
data = re.findall(r"\d+\.?\d*", line)
if len(data) == 6:
if float(data[-2]) < conf_threshold:
continue
else:
result.append([float(num) for num in data])
return np.array(result)
def write2file(error_file):
import os
if not os.path.exists(error_file):
with open(error_file, "w+") as f:
f.write("Failed Cases:\n")
with open(error_file, "a+") as f:
from platform import python_version
py_version = python_version()
f.write(args.platform + " " + py_version + " " +
args.result_path.split(".")[0] + "\n")
def save_numpy_result(file_path, error_msg):
np.savetxt(file_path, error_msg, fmt='%f', delimiter=',')
def check_result(gt_result, infer_result, args):
platform = args.platform
if len(gt_result) != len(infer_result):
infer_result = infer_result[-len(gt_result):]
diff = np.abs(gt_result - infer_result)
label_diff = diff[:, -1]
score_diff = diff[:, -2]
boxes_diff = diff[:, :-2]
boxes_diff_ratio = boxes_diff / (infer_result[:, :-2] + 1e-6)
label_diff_threshold = diff_score_threshold[platform]["label_diff"]
score_diff_threshold = diff_score_threshold[platform]["score_diff"]
boxes_diff_threshold = diff_score_threshold[platform]["boxes_diff"]
boxes_diff_ratio_threshold = diff_score_threshold[platform][
"boxes_diff_ratio"]
is_diff = False
backend = args.result_path.split(".")[0]
if (label_diff > label_diff_threshold).any():
print(args.platform, args.device, "label diff ", label_diff)
is_diff = True
label_diff_bool_file = args.platform + "_" + backend + "_" + "label_diff_bool.txt"
save_numpy_result(label_diff_bool_file,
label_diff > label_diff_threshold)
if (score_diff > score_diff_threshold).any():
print(args.platform, args.device, "score diff ", score_diff)
is_diff = True
score_diff_bool_file = args.platform + "_" + backend + "_" + "score_diff_bool.txt"
save_numpy_result(score_diff_bool_file,
score_diff > score_diff_threshold)
if (boxes_diff_ratio > boxes_diff_ratio_threshold).any() and (
boxes_diff > boxes_diff_threshold).any():
print(args.platform, args.device, "boxes diff ", boxes_diff_ratio)
is_diff = True
boxes_diff_bool_file = args.platform + "_" + backend + "_" + "boxes_diff_bool.txt"
boxes_diff_ratio_file = args.platform + "_" + backend + "_" + "boxes_diff_ratio.txt"
boxes_diff_ratio_bool_file = args.platform + "_" + backend + "_" + "boxes_diff_ratio_bool.txt"
save_numpy_result(boxes_diff_bool_file,
boxes_diff > boxes_diff_threshold)
save_numpy_result(boxes_diff_ratio_file, boxes_diff_ratio)
save_numpy_result(boxes_diff_ratio_bool_file,
boxes_diff_ratio > boxes_diff_ratio_threshold)
if is_diff:
write2file("result.txt")
else:
print(args.platform, args.device, "No diff")
if __name__ == '__main__':
args = parse_arguments()
gt_numpy = convert2numpy(args.gt_path, args.conf_threshold)
infer_numpy = convert2numpy(args.result_path, args.conf_threshold)
gt_numpy = all_sort(gt_numpy)
infer_numpy = all_sort(infer_numpy)
check_result(gt_numpy, infer_numpy, args)