-
Notifications
You must be signed in to change notification settings - Fork 475
/
Copy patheigensolver_generalized_real.cpp
110 lines (97 loc) · 4.11 KB
/
eigensolver_generalized_real.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_RUNTIME_NO_MALLOC
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <limits>
#include "main.h"
template <typename MatrixType>
void generalized_eigensolver_real(const MatrixType& m) {
/* this test covers the following files:
GeneralizedEigenSolver.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef std::complex<Scalar> ComplexScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType a = MatrixType::Random(rows, cols);
MatrixType b = MatrixType::Random(rows, cols);
MatrixType a1 = MatrixType::Random(rows, cols);
MatrixType b1 = MatrixType::Random(rows, cols);
MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1;
MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
// lets compare to GeneralizedSelfAdjointEigenSolver
{
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
VectorType realEigenvalues = eig.eigenvalues().real();
std::sort(realEigenvalues.data(),
realEigenvalues.data() + realEigenvalues.size());
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
// check eigenvectors
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D =
eig.eigenvalues().asDiagonal();
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V =
eig.eigenvectors();
VERIFY_IS_APPROX(spdA * V, spdB * V * D);
}
// non symmetric case:
{
GeneralizedEigenSolver<MatrixType> eig(rows);
// TODO enable full-prealocation of required memory, this probably requires
// an in-place mode for HessenbergDecomposition
// Eigen::internal::set_is_malloc_allowed(false);
eig.compute(a, b);
// Eigen::internal::set_is_malloc_allowed(true);
for (Index k = 0; k < cols; ++k) {
Matrix<ComplexScalar, Dynamic, Dynamic> tmp =
(eig.betas()(k) * a).template cast<ComplexScalar>() -
eig.alphas()(k) * b;
if (tmp.size() > 1 && tmp.norm() > (std::numeric_limits<Scalar>::min)())
tmp /= tmp.norm();
VERIFY_IS_MUCH_SMALLER_THAN(std::abs(tmp.determinant()), Scalar(1));
}
// check eigenvectors
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D =
eig.eigenvalues().asDiagonal();
typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V =
eig.eigenvectors();
VERIFY_IS_APPROX(a * V, b * V * D);
}
// regression test for bug 1098
{
GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a,
b.adjoint() * b);
eig1.compute(a.adjoint() * a, b.adjoint() * b);
GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a, b.adjoint() * b);
eig2.compute(a.adjoint() * a, b.adjoint() * b);
}
// check without eigenvectors
{
GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true);
GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false);
VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
}
}
EIGEN_DECLARE_TEST(eigensolver_generalized_real) {
for (int i = 0; i < g_repeat; i++) {
int s = 0;
CALL_SUBTEST_1(generalized_eigensolver_real(Matrix4f()));
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(s, s)));
// some trivial but implementation-wise special cases
CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(1, 1)));
CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(2, 2)));
CALL_SUBTEST_3(generalized_eigensolver_real(Matrix<double, 1, 1>()));
CALL_SUBTEST_4(generalized_eigensolver_real(Matrix2d()));
TEST_SET_BUT_UNUSED_VARIABLE(s)
}
}