-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathnomalloc.cpp
255 lines (215 loc) · 8.51 KB
/
nomalloc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
// heap allocation will raise an assert if enabled at runtime
#define EIGEN_RUNTIME_NO_MALLOC
#include <Eigen/Cholesky>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>
#include "main.h"
template <typename MatrixType>
void nomalloc(const MatrixType& m) {
/* this test check no dynamic memory allocation are issued with fixed-size
* matrices
*/
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols), m3(rows, cols);
Scalar s1 = internal::random<Scalar>();
Index r = internal::random<Index>(0, rows - 1),
c = internal::random<Index>(0, cols - 1);
VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2);
VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c)));
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)),
(m1.array() * m1.array()).matrix());
VERIFY_IS_APPROX((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2));
m2.col(0).noalias() = m1 * m1.col(0);
m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
m2.row(0).noalias() = m1.row(0) * m1;
m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
VERIFY_IS_APPROX(m2, m2);
m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
m2.col(0).noalias() -=
m1.adjoint().template triangularView<Upper>() * m1.col(0);
m2.col(0).noalias() -=
m1.template triangularView<Upper>() * m1.row(0).adjoint();
m2.col(0).noalias() -=
m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
m2.row(0).noalias() -=
m1.row(0) * m1.adjoint().template triangularView<Upper>();
m2.row(0).noalias() -=
m1.col(0).adjoint() * m1.template triangularView<Upper>();
m2.row(0).noalias() -=
m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
VERIFY_IS_APPROX(m2, m2);
m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
m2.col(0).noalias() -=
m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
m2.col(0).noalias() -=
m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
m2.col(0).noalias() -=
m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
m2.row(0).noalias() -=
m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
m2.row(0).noalias() -=
m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
m2.row(0).noalias() -=
m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
VERIFY_IS_APPROX(m2, m2);
m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), -1);
m2.template selfadjointView<Upper>().rankUpdate(m1.row(0), -1);
m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),
m1.col(0)); // rank-2
// The following fancy matrix-matrix products are not safe yet regarding
// static allocation
m2.template selfadjointView<Lower>().rankUpdate(m1);
m2 += m2.template triangularView<Upper>() * m1;
m2.template triangularView<Upper>() = m2 * m2;
m1 += m1.template selfadjointView<Lower>() * m2;
VERIFY_IS_APPROX(m2, m2);
}
template <typename Scalar>
void ctms_decompositions() {
const int maxSize = 16;
const int size = 12;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize,
maxSize>
Matrix;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, 0, maxSize, 1> Vector;
typedef Eigen::Matrix<std::complex<Scalar>, Eigen::Dynamic, Eigen::Dynamic, 0,
maxSize, maxSize>
ComplexMatrix;
const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
Matrix X(size, size);
const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
const Matrix saA = A.adjoint() * A;
const Vector b(Vector::Random(size));
Vector x(size);
// Cholesky module
Eigen::LLT<Matrix> LLT;
LLT.compute(A);
X = LLT.solve(B);
x = LLT.solve(b);
Eigen::LDLT<Matrix> LDLT;
LDLT.compute(A);
X = LDLT.solve(B);
x = LDLT.solve(b);
// Eigenvalues module
Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;
hessDecomp.compute(complexA);
Eigen::ComplexSchur<ComplexMatrix> cSchur(size);
cSchur.compute(complexA);
Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver;
cEigSolver.compute(complexA);
Eigen::EigenSolver<Matrix> eigSolver;
eigSolver.compute(A);
Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size);
saEigSolver.compute(saA);
Eigen::Tridiagonalization<Matrix> tridiag;
tridiag.compute(saA);
// LU module
Eigen::PartialPivLU<Matrix> ppLU;
ppLU.compute(A);
X = ppLU.solve(B);
x = ppLU.solve(b);
Eigen::FullPivLU<Matrix> fpLU;
fpLU.compute(A);
X = fpLU.solve(B);
x = fpLU.solve(b);
// QR module
Eigen::HouseholderQR<Matrix> hQR;
hQR.compute(A);
X = hQR.solve(B);
x = hQR.solve(b);
Eigen::ColPivHouseholderQR<Matrix> cpQR;
cpQR.compute(A);
X = cpQR.solve(B);
x = cpQR.solve(b);
Eigen::FullPivHouseholderQR<Matrix> fpQR;
fpQR.compute(A);
// FIXME X = fpQR.solve(B);
x = fpQR.solve(b);
// SVD module
Eigen::JacobiSVD<Matrix> jSVD;
jSVD.compute(A, ComputeFullU | ComputeFullV);
}
void test_zerosized() {
// default constructors:
Eigen::MatrixXd A;
Eigen::VectorXd v;
// explicit zero-sized:
Eigen::ArrayXXd A0(0, 0);
Eigen::ArrayXd v0(0);
// assigning empty objects to each other:
A = A0;
v = v0;
}
template <typename MatrixType>
void test_reference(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor };
enum {
TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor
};
Index rows = m.rows(), cols = m.cols();
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag> MatrixX;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag>
MatrixXT;
// Dynamic reference:
typedef Eigen::Ref<const MatrixX> Ref;
typedef Eigen::Ref<const MatrixXT> RefT;
Ref r1(m);
Ref r2(m.block(rows / 3, cols / 4, rows / 2, cols / 2));
RefT r3(m.transpose());
RefT r4(m.topLeftCorner(rows / 2, cols / 2).transpose());
VERIFY_RAISES_ASSERT(RefT r5(m));
VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
// Copy constructors shall also never malloc
Ref r8 = r1;
RefT r9 = r3;
// Initializing from a compatible Ref shall also never malloc
Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10 = r8,
r11 = m;
// Initializing from an incompatible Ref will malloc:
typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
VERIFY_RAISES_ASSERT(RefAligned r12 = r10);
VERIFY_RAISES_ASSERT(Ref r13 = r10); // r10 has more dynamic strides
}
EIGEN_DECLARE_TEST(nomalloc) {
// create some dynamic objects
Eigen::MatrixXd M1 = MatrixXd::Random(3, 3);
Ref<const MatrixXd> R1 = 2.0 * M1; // Ref requires temporary
// from here on prohibit malloc:
Eigen::internal::set_is_malloc_allowed(false);
// check that our operator new is indeed called:
VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3, 3)));
CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(nomalloc(Matrix4d()));
CALL_SUBTEST_3(nomalloc(Matrix<float, 32, 32>()));
// Check decomposition modules with dynamic matrices that have a known
// compile-time max size (ctms)
CALL_SUBTEST_4(ctms_decompositions<float>());
CALL_SUBTEST_5(test_zerosized());
CALL_SUBTEST_6(test_reference(Matrix<float, 32, 32>()));
CALL_SUBTEST_7(test_reference(R1));
CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
}