English | 简体中文
For YOLOv5 v6.0 model deployment, please refer to YOLOv5 and Pretrained model based on COCO.
Before deploying SOPHGO-TPU model, you need to first convert Paddle model to bmodel. Specific steps are as follows:
- Download the pre-trained ONNX model. Please refer to YOLOv5 Ready-to-deploy Model.
- Convert ONNX model to bmodel. Please refer to TPU-MLIR.
Here we take YOLOv5s as an example to show you how to convert ONNX model to SOPHGO-TPU model.
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
Here we take BM1684x bmodel as an example. You need to download TPU-MLIR project. For the installing process, please refer to TPU-MLIR Document.
docker pull sophgo/tpuc_dev:latest
# myname1234 is just an example, you can customize your own name.
docker run --privileged --name myname1234 -v $PWD:/workspace -it sophgo/tpuc_dev:latest
source ./envsetup.sh
./build.sh
mkdir YOLOv5s && cd YOLOv5s
# Put the test image in this file, and put the yolov5s.onnx into this folder.
cp -rf ${REGRESSION_PATH}/dataset/COCO2017 .
cp -rf ${REGRESSION_PATH}/image .
# Put in the onnx model file yolov5s.onnx
mkdir workspace && cd workspace
# Convert ONNX model to mlir model, the parameter --output_names can be viewed via NETRON.
model_transform.py \
--model_name yolov5s \
--model_def ../yolov5s.onnx \
--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio \
--pixel_format rgb \
--output_names output,350,498,646 \
--test_input ../image/dog.jpg \
--test_result yolov5s_top_outputs.npz \
--mlir yolov5s.mlir
# Convert mlir model to BM1684x F32 bmodel.
model_deploy.py \
--mlir yolov5s.mlir \
--quantize F32 \
--chip bm1684x \
--test_input yolov5s_in_f32.npz \
--test_reference yolov5s_top_outputs.npz \
--model yolov5s_1684x_f32.bmodel
The final bmodel, yolov5s_1684x_f32.bmodel, can run on BM1684x. If you want to further accelerate the model, you can convert ONNX model to INT8 bmodel. For details, please refer to TPU-MLIR Document.