-
Notifications
You must be signed in to change notification settings - Fork 320
/
Copy pathdata_aug.py
856 lines (519 loc) · 23.9 KB
/
data_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
import random
import numpy as np
import cv2
import matplotlib.pyplot as plt
import sys
import os
from data_aug.bbox_util import *
lib_path = os.path.join(os.path.realpath("."), "data_aug")
sys.path.append(lib_path)
class RandomHorizontalFlip(object):
"""Randomly horizontally flips the Image with the probability *p*
Parameters
----------
p: float
The probability with which the image is flipped
Returns
-------
numpy.ndaaray
Flipped image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, bboxes):
img_center = np.array(img.shape[:2])[::-1]/2
img_center = np.hstack((img_center, img_center))
if random.random() < self.p:
img = img[:, ::-1, :]
bboxes[:, [0, 2]] += 2*(img_center[[0, 2]] - bboxes[:, [0, 2]])
box_w = abs(bboxes[:, 0] - bboxes[:, 2])
bboxes[:, 0] -= box_w
bboxes[:, 2] += box_w
return img, bboxes
class HorizontalFlip(object):
"""Randomly horizontally flips the Image with the probability *p*
Parameters
----------
p: float
The probability with which the image is flipped
Returns
-------
numpy.ndaaray
Flipped image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self):
pass
def __call__(self, img, bboxes):
img_center = np.array(img.shape[:2])[::-1]/2
img_center = np.hstack((img_center, img_center))
img = img[:, ::-1, :]
bboxes[:, [0, 2]] += 2*(img_center[[0, 2]] - bboxes[:, [0, 2]])
box_w = abs(bboxes[:, 0] - bboxes[:, 2])
bboxes[:, 0] -= box_w
bboxes[:, 2] += box_w
return img, bboxes
class RandomScale(object):
"""Randomly scales an image
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
scale: float or tuple(float)
if **float**, the image is scaled by a factor drawn
randomly from a range (1 - `scale` , 1 + `scale`). If **tuple**,
the `scale` is drawn randomly from values specified by the
tuple
Returns
-------
numpy.ndaaray
Scaled image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, scale = 0.2, diff = False):
self.scale = scale
if type(self.scale) == tuple:
assert len(self.scale) == 2, "Invalid range"
assert self.scale[0] > -1, "Scale factor can't be less than -1"
assert self.scale[1] > -1, "Scale factor can't be less than -1"
else:
assert self.scale > 0, "Please input a positive float"
self.scale = (max(-1, -self.scale), self.scale)
self.diff = diff
def __call__(self, img, bboxes):
#Chose a random digit to scale by
img_shape = img.shape
if self.diff:
scale_x = random.uniform(*self.scale)
scale_y = random.uniform(*self.scale)
else:
scale_x = random.uniform(*self.scale)
scale_y = scale_x
resize_scale_x = 1 + scale_x
resize_scale_y = 1 + scale_y
img= cv2.resize(img, None, fx = resize_scale_x, fy = resize_scale_y)
bboxes[:,:4] *= [resize_scale_x, resize_scale_y, resize_scale_x, resize_scale_y]
canvas = np.zeros(img_shape, dtype = np.uint8)
y_lim = int(min(resize_scale_y,1)*img_shape[0])
x_lim = int(min(resize_scale_x,1)*img_shape[1])
canvas[:y_lim,:x_lim,:] = img[:y_lim,:x_lim,:]
img = canvas
bboxes = clip_box(bboxes, [0,0,1 + img_shape[1], img_shape[0]], 0.25)
return img, bboxes
class Scale(object):
"""Scales the image
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
scale_x: float
The factor by which the image is scaled horizontally
scale_y: float
The factor by which the image is scaled vertically
Returns
-------
numpy.ndaaray
Scaled image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, scale_x = 0.2, scale_y = 0.2):
self.scale_x = scale_x
self.scale_y = scale_y
def __call__(self, img, bboxes):
#Chose a random digit to scale by
img_shape = img.shape
resize_scale_x = 1 + self.scale_x
resize_scale_y = 1 + self.scale_y
img= cv2.resize(img, None, fx = resize_scale_x, fy = resize_scale_y)
bboxes[:,:4] *= [resize_scale_x, resize_scale_y, resize_scale_x, resize_scale_y]
canvas = np.zeros(img_shape, dtype = np.uint8)
y_lim = int(min(resize_scale_y,1)*img_shape[0])
x_lim = int(min(resize_scale_x,1)*img_shape[1])
canvas[:y_lim,:x_lim,:] = img[:y_lim,:x_lim,:]
img = canvas
bboxes = clip_box(bboxes, [0,0,1 + img_shape[1], img_shape[0]], 0.25)
return img, bboxes
class RandomTranslate(object):
"""Randomly Translates the image
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
translate: float or tuple(float)
if **float**, the image is translated by a factor drawn
randomly from a range (1 - `translate` , 1 + `translate`). If **tuple**,
`translate` is drawn randomly from values specified by the
tuple
Returns
-------
numpy.ndaaray
Translated image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, translate = 0.2, diff = False):
self.translate = translate
if type(self.translate) == tuple:
assert len(self.translate) == 2, "Invalid range"
assert self.translate[0] > 0 & self.translate[0] < 1
assert self.translate[1] > 0 & self.translate[1] < 1
else:
assert self.translate > 0 and self.translate < 1
self.translate = (-self.translate, self.translate)
self.diff = diff
def __call__(self, img, bboxes):
#Chose a random digit to scale by
img_shape = img.shape
#translate the image
#percentage of the dimension of the image to translate
translate_factor_x = random.uniform(*self.translate)
translate_factor_y = random.uniform(*self.translate)
if not self.diff:
translate_factor_y = translate_factor_x
canvas = np.zeros(img_shape).astype(np.uint8)
corner_x = int(translate_factor_x*img.shape[1])
corner_y = int(translate_factor_y*img.shape[0])
#change the origin to the top-left corner of the translated box
orig_box_cords = [max(0,corner_y), max(corner_x,0), min(img_shape[0], corner_y + img.shape[0]), min(img_shape[1],corner_x + img.shape[1])]
mask = img[max(-corner_y, 0):min(img.shape[0], -corner_y + img_shape[0]), max(-corner_x, 0):min(img.shape[1], -corner_x + img_shape[1]),:]
canvas[orig_box_cords[0]:orig_box_cords[2], orig_box_cords[1]:orig_box_cords[3],:] = mask
img = canvas
bboxes[:,:4] += [corner_x, corner_y, corner_x, corner_y]
bboxes = clip_box(bboxes, [0,0,img_shape[1], img_shape[0]], 0.25)
return img, bboxes
class Translate(object):
"""Randomly Translates the image
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
translate: float or tuple(float)
if **float**, the image is translated by a factor drawn
randomly from a range (1 - `translate` , 1 + `translate`). If **tuple**,
`translate` is drawn randomly from values specified by the
tuple
Returns
-------
numpy.ndaaray
Translated image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, translate_x = 0.2, translate_y = 0.2, diff = False):
self.translate_x = translate_x
self.translate_y = translate_y
assert self.translate_x > 0 and self.translate_x < 1
assert self.translate_y > 0 and self.translate_y < 1
def __call__(self, img, bboxes):
#Chose a random digit to scale by
img_shape = img.shape
#translate the image
#percentage of the dimension of the image to translate
translate_factor_x = self.translate_x
translate_factor_y = self.translate_y
canvas = np.zeros(img_shape).astype(np.uint8)
#get the top-left corner co-ordinates of the shifted box
corner_x = int(translate_factor_x*img.shape[1])
corner_y = int(translate_factor_y*img.shape[0])
#change the origin to the top-left corner of the translated box
orig_box_cords = [max(0,corner_y), max(corner_x,0), min(img_shape[0], corner_y + img.shape[0]), min(img_shape[1],corner_x + img.shape[1])]
mask = img[max(-corner_y, 0):min(img.shape[0], -corner_y + img_shape[0]), max(-corner_x, 0):min(img.shape[1], -corner_x + img_shape[1]),:]
canvas[orig_box_cords[0]:orig_box_cords[2], orig_box_cords[1]:orig_box_cords[3],:] = mask
img = canvas
bboxes[:,:4] += [corner_x, corner_y, corner_x, corner_y]
bboxes = clip_box(bboxes, [0,0,img_shape[1], img_shape[0]], 0.25)
return img, bboxes
class RandomRotate(object):
"""Randomly rotates an image
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
angle: float or tuple(float)
if **float**, the image is rotated by a factor drawn
randomly from a range (-`angle`, `angle`). If **tuple**,
the `angle` is drawn randomly from values specified by the
tuple
Returns
-------
numpy.ndaaray
Rotated image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, angle = 10):
self.angle = angle
if type(self.angle) == tuple:
assert len(self.angle) == 2, "Invalid range"
else:
self.angle = (-self.angle, self.angle)
def __call__(self, img, bboxes):
angle = random.uniform(*self.angle)
w,h = img.shape[1], img.shape[0]
cx, cy = w//2, h//2
img = rotate_im(img, angle)
corners = get_corners(bboxes)
corners = np.hstack((corners, bboxes[:,4:]))
corners[:,:8] = rotate_box(corners[:,:8], angle, cx, cy, h, w)
new_bbox = get_enclosing_box(corners)
scale_factor_x = img.shape[1] / w
scale_factor_y = img.shape[0] / h
img = cv2.resize(img, (w,h))
new_bbox[:,:4] /= [scale_factor_x, scale_factor_y, scale_factor_x, scale_factor_y]
bboxes = new_bbox
bboxes = clip_box(bboxes, [0,0,w, h], 0.25)
return img, bboxes
class Rotate(object):
"""Rotates an image
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
angle: float
The angle by which the image is to be rotated
Returns
-------
numpy.ndaaray
Rotated image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, angle):
self.angle = angle
def __call__(self, img, bboxes):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
angle = self.angle
print(self.angle)
w,h = img.shape[1], img.shape[0]
cx, cy = w//2, h//2
corners = get_corners(bboxes)
corners = np.hstack((corners, bboxes[:,4:]))
img = rotate_im(img, angle)
corners[:,:8] = rotate_box(corners[:,:8], angle, cx, cy, h, w)
new_bbox = get_enclosing_box(corners)
scale_factor_x = img.shape[1] / w
scale_factor_y = img.shape[0] / h
img = cv2.resize(img, (w,h))
new_bbox[:,:4] /= [scale_factor_x, scale_factor_y, scale_factor_x, scale_factor_y]
bboxes = new_bbox
bboxes = clip_box(bboxes, [0,0,w, h], 0.25)
return img, bboxes
class RandomShear(object):
"""Randomly shears an image in horizontal direction
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
shear_factor: float or tuple(float)
if **float**, the image is sheared horizontally by a factor drawn
randomly from a range (-`shear_factor`, `shear_factor`). If **tuple**,
the `shear_factor` is drawn randomly from values specified by the
tuple
Returns
-------
numpy.ndaaray
Sheared image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, shear_factor = 0.2):
self.shear_factor = shear_factor
if type(self.shear_factor) == tuple:
assert len(self.shear_factor) == 2, "Invalid range for scaling factor"
else:
self.shear_factor = (-self.shear_factor, self.shear_factor)
shear_factor = random.uniform(*self.shear_factor)
def __call__(self, img, bboxes):
shear_factor = random.uniform(*self.shear_factor)
w,h = img.shape[1], img.shape[0]
if shear_factor < 0:
img, bboxes = HorizontalFlip()(img, bboxes)
M = np.array([[1, abs(shear_factor), 0],[0,1,0]])
nW = img.shape[1] + abs(shear_factor*img.shape[0])
bboxes[:,[0,2]] += ((bboxes[:,[1,3]]) * abs(shear_factor) ).astype(int)
img = cv2.warpAffine(img, M, (int(nW), img.shape[0]))
if shear_factor < 0:
img, bboxes = HorizontalFlip()(img, bboxes)
img = cv2.resize(img, (w,h))
scale_factor_x = nW / w
bboxes[:,:4] /= [scale_factor_x, 1, scale_factor_x, 1]
return img, bboxes
class Shear(object):
"""Shears an image in horizontal direction
Bounding boxes which have an area of less than 25% in the remaining in the
transformed image is dropped. The resolution is maintained, and the remaining
area if any is filled by black color.
Parameters
----------
shear_factor: float
Factor by which the image is sheared in the x-direction
Returns
-------
numpy.ndaaray
Sheared image in the numpy format of shape `HxWxC`
numpy.ndarray
Tranformed bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, shear_factor = 0.2):
self.shear_factor = shear_factor
def __call__(self, img, bboxes):
shear_factor = self.shear_factor
if shear_factor < 0:
img, bboxes = HorizontalFlip()(img, bboxes)
M = np.array([[1, abs(shear_factor), 0],[0,1,0]])
nW = img.shape[1] + abs(shear_factor*img.shape[0])
bboxes[:,[0,2]] += ((bboxes[:,[1,3]])*abs(shear_factor)).astype(int)
img = cv2.warpAffine(img, M, (int(nW), img.shape[0]))
if shear_factor < 0:
img, bboxes = HorizontalFlip()(img, bboxes)
return img, bboxes
class Resize(object):
"""Resize the image in accordance to `image_letter_box` function in darknet
The aspect ratio is maintained. The longer side is resized to the input
size of the network, while the remaining space on the shorter side is filled
with black color. **This should be the last transform**
Parameters
----------
inp_dim : tuple(int)
tuple containing the size to which the image will be resized.
Returns
-------
numpy.ndaaray
Sheared image in the numpy format of shape `HxWxC`
numpy.ndarray
Resized bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, inp_dim):
self.inp_dim = inp_dim
def __call__(self, img, bboxes):
w,h = img.shape[1], img.shape[0]
img = letterbox_image(img, self.inp_dim)
scale = min(self.inp_dim/h, self.inp_dim/w)
bboxes[:,:4] *= (scale)
new_w = scale*w
new_h = scale*h
inp_dim = self.inp_dim
del_h = (inp_dim - new_h)/2
del_w = (inp_dim - new_w)/2
add_matrix = np.array([[del_w, del_h, del_w, del_h]]).astype(int)
bboxes[:,:4] += add_matrix
img = img.astype(np.uint8)
return img, bboxes
class RandomHSV(object):
"""HSV Transform to vary hue saturation and brightness
Hue has a range of 0-179
Saturation and Brightness have a range of 0-255.
Chose the amount you want to change thhe above quantities accordingly.
Parameters
----------
hue : None or int or tuple (int)
If None, the hue of the image is left unchanged. If int,
a random int is uniformly sampled from (-hue, hue) and added to the
hue of the image. If tuple, the int is sampled from the range
specified by the tuple.
saturation : None or int or tuple(int)
If None, the saturation of the image is left unchanged. If int,
a random int is uniformly sampled from (-saturation, saturation)
and added to the hue of the image. If tuple, the int is sampled
from the range specified by the tuple.
brightness : None or int or tuple(int)
If None, the brightness of the image is left unchanged. If int,
a random int is uniformly sampled from (-brightness, brightness)
and added to the hue of the image. If tuple, the int is sampled
from the range specified by the tuple.
Returns
-------
numpy.ndaaray
Transformed image in the numpy format of shape `HxWxC`
numpy.ndarray
Resized bounding box co-ordinates of the format `n x 4` where n is
number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
"""
def __init__(self, hue = None, saturation = None, brightness = None):
if hue:
self.hue = hue
else:
self.hue = 0
if saturation:
self.saturation = saturation
else:
self.saturation = 0
if brightness:
self.brightness = brightness
else:
self.brightness = 0
if type(self.hue) != tuple:
self.hue = (-self.hue, self.hue)
if type(self.saturation) != tuple:
self.saturation = (-self.saturation, self.saturation)
if type(brightness) != tuple:
self.brightness = (-self.brightness, self.brightness)
def __call__(self, img, bboxes):
hue = random.randint(*self.hue)
saturation = random.randint(*self.saturation)
brightness = random.randint(*self.brightness)
img = img.astype(int)
a = np.array([hue, saturation, brightness]).astype(int)
img += np.reshape(a, (1,1,3))
img = np.clip(img, 0, 255)
img[:,:,0] = np.clip(img[:,:,0],0, 179)
img = img.astype(np.uint8)
return img, bboxes
class Sequence(object):
"""Initialise Sequence object
Apply a Sequence of transformations to the images/boxes.
Parameters
----------
augemnetations : list
List containing Transformation Objects in Sequence they are to be
applied
probs : int or list
If **int**, the probability with which each of the transformation will
be applied. If **list**, the length must be equal to *augmentations*.
Each element of this list is the probability with which each
corresponding transformation is applied
Returns
-------
Sequence
Sequence Object
"""
def __init__(self, augmentations, probs = 1):
self.augmentations = augmentations
self.probs = probs
def __call__(self, images, bboxes):
for i, augmentation in enumerate(self.augmentations):
if type(self.probs) == list:
prob = self.probs[i]
else:
prob = self.probs
if random.random() < prob:
images, bboxes = augmentation(images, bboxes)
return images, bboxes