-
-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathsparselu.jl
97 lines (82 loc) · 3.01 KB
/
sparselu.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
using BenchmarkTools, Random, VectorizationBase
using LinearAlgebra, SparseArrays, LinearSolve, Sparspak
import Pardiso
using Plots
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 0.5
# Why do I need to set this ?
BenchmarkTools.DEFAULT_PARAMETERS.samples = 10
# Sparse matrix generation on a n-dimensional rectangular grid. After
# https://discourse.julialang.org/t/seven-lines-of-julia-examples-sought/50416/135
# by A. Braunstein.
A ⊕ B = kron(I(size(B, 1)), A) + kron(B, I(size(A, 1)))
function lattice(n; Tv = Float64)
d = fill(2 * one(Tv), n)
d[1] = one(Tv)
d[end] = one(Tv)
spdiagm(1 => -ones(Tv, n - 1), 0 => d, -1 => -ones(Tv, n - 1))
end
lattice(L...; Tv = Float64) = lattice(L[1]; Tv) ⊕ lattice(L[2:end]...; Tv)
#
# Create a matrix similar to that of a finite difference discretization in a `dim`-dimensional
# unit cube of ``-Δu + δu`` with approximately N unknowns. It is strictly diagonally dominant.
#
function fdmatrix(N; dim = 2, Tv = Float64, δ = 1.0e-2)
n = N^(1 / dim) |> ceil |> Int
lattice([n for i in 1:dim]...; Tv) + Tv(δ) * I
end
algs = [
UMFPACKFactorization(),
KLUFactorization(),
MKLPardisoFactorize(),
SparspakFactorization()
]
cols = [:red, :blue, :green, :magenta, :turqoise] # one color per alg
lst = [:dash, :solid, :dashdot] # one line style per dim
__parameterless_type(T) = Base.typename(T).wrapper
parameterless_type(x) = __parameterless_type(typeof(x))
parameterless_type(::Type{T}) where {T} = __parameterless_type(T)
#
# kmax=12 gives ≈ 40_000 unknowns max, can be watched in real time
# kmax=15 gives ≈ 328_000 unknows, you can go make a coffee.
# Main culprit is KLU factorization in 3D.
#
function run_and_plot(; dims = [1, 2, 3], kmax = 12)
ns = [10 * 2^k for k in 0:kmax]
res = [[Float64[] for i in 1:length(algs)] for dim in dims]
for dim in dims
for i in 1:length(ns)
rng = MersenneTwister(123)
A = fdmatrix(ns[i]; dim)
n = size(A, 1)
@info "dim=$(dim): $n × $n"
b = rand(rng, n)
u0 = rand(rng, n)
for j in 1:length(algs)
bt = @belapsed solve(prob, $(algs[j])).u setup=(prob = LinearProblem(
copy($A),
copy($b);
u0 = copy($u0),
alias = LinearAliasSpecifier(alias_A = true, alias_b = true)))
push!(res[dim][j], bt)
end
end
end
p = plot(;
ylabel = "Time/s",
xlabel = "N",
yscale = :log10,
xscale = :log10,
title = "Time for NxN sparse LU Factorization",
label = string(Symbol(parameterless_type(algs[1]))),
legend = :outertopright)
for dim in dims
for i in 1:length(algs)
plot!(p, ns, res[dim][i];
linecolor = cols[i],
linestyle = lst[dim],
label = "$(string(Symbol(parameterless_type(algs[i])))) $(dim)D")
end
end
savefig("sparselubench.png")
savefig("sparselubench.pdf")
end