-
-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathenzyme.jl
216 lines (173 loc) · 4.76 KB
/
enzyme.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
using Enzyme, ForwardDiff
using LinearSolve, LinearAlgebra, Test
using FiniteDiff, RecursiveFactorization
n = 4
A = rand(n, n);
dA = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);
function f(A, b1; alg = LUFactorization())
prob = LinearProblem(A, b1)
sol1 = solve(prob, alg)
s1 = sol1.u
norm(s1)
end
f(A, b1) # Uses BLAS
Enzyme.autodiff(Reverse, f, Duplicated(copy(A), dA), Duplicated(copy(b1), db1))
dA2 = ForwardDiff.gradient(x -> f(x, eltype(x).(b1)), copy(A))
db12 = ForwardDiff.gradient(x -> f(eltype(x).(A), x), copy(b1))
@test dA ≈ dA2
@test db1 ≈ db12
A = rand(n, n);
dA = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);
_ff = (x, y) -> f(x,
y;
alg = LinearSolve.DefaultLinearSolver(LinearSolve.DefaultAlgorithmChoice.LUFactorization))
_ff(copy(A), copy(b1))
Enzyme.autodiff(Reverse,
(x, y) -> f(x,
y;
alg = LinearSolve.DefaultLinearSolver(LinearSolve.DefaultAlgorithmChoice.LUFactorization)),
Duplicated(copy(A), dA),
Duplicated(copy(b1), db1))
dA2 = ForwardDiff.gradient(x -> f(x, eltype(x).(b1)), copy(A))
db12 = ForwardDiff.gradient(x -> f(eltype(x).(A), x), copy(b1))
@test dA ≈ dA2
@test db1 ≈ db12
A = rand(n, n);
dA = zeros(n, n);
dA2 = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);
db12 = zeros(n);
# Batch test
n = 4
A = rand(n, n);
dA = zeros(n, n);
dA2 = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);
db12 = zeros(n);
function f(A, b1; alg = LUFactorization())
prob = LinearProblem(A, b1)
sol1 = solve(prob, alg)
s1 = sol1.u
norm(s1)
end
function fbatch(y, A, b1; alg = LUFactorization())
prob = LinearProblem(A, b1)
sol1 = solve(prob, alg)
s1 = sol1.u
y[1] = norm(s1)
nothing
end
y = [0.0]
dy1 = [1.0]
dy2 = [1.0]
Enzyme.autodiff(
Reverse, fbatch, Duplicated(y, dy1), Duplicated(copy(A), dA), Duplicated(copy(b1), db1))
@test y[1] ≈ f(copy(A), b1)
dA_2 = ForwardDiff.gradient(x -> f(x, eltype(x).(b1)), copy(A))
db1_2 = ForwardDiff.gradient(x -> f(eltype(x).(A), x), copy(b1))
@test dA ≈ dA_2
@test db1 ≈ db1_2
y .= 0
dy1 .= 1
dy2 .= 1
dA .= 0
dA2 .= 0
db1 .= 0
db12 .= 0
Enzyme.autodiff(Reverse, fbatch, BatchDuplicated(y, (dy1, dy2)),
BatchDuplicated(copy(A), (dA, dA2)), BatchDuplicated(copy(b1), (db1, db12)))
@test dA ≈ dA_2
@test db1 ≈ db1_2
@test dA2 ≈ dA_2
@test db12 ≈ db1_2
function f(A, b1, b2; alg = LUFactorization())
prob = LinearProblem(A, b1)
cache = init(prob, alg)
s1 = copy(solve!(cache).u)
cache.b = b2
s2 = solve!(cache).u
norm(s1 + s2)
end
A = rand(n, n);
dA = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);
b2 = rand(n);
db2 = zeros(n);
f(A, b1, b2)
Enzyme.autodiff(Reverse, f, Duplicated(copy(A), dA),
Duplicated(copy(b1), db1), Duplicated(copy(b2), db2))
dA2 = ForwardDiff.gradient(x -> f(x, eltype(x).(b1), eltype(x).(b2)), copy(A))
db12 = ForwardDiff.gradient(x -> f(eltype(x).(A), x, eltype(x).(b2)), copy(b1))
db22 = ForwardDiff.gradient(x -> f(eltype(x).(A), eltype(x).(b1), x), copy(b2))
@test dA ≈ dA2
@test db1 ≈ db12
@test db2 ≈ db22
function f2(A, b1, b2; alg = RFLUFactorization())
prob = LinearProblem(A, b1)
cache = init(prob, alg)
s1 = copy(solve!(cache).u)
cache.b = b2
s2 = solve!(cache).u
norm(s1 + s2)
end
f2(A, b1, b2)
dA = zeros(n, n);
db1 = zeros(n);
db2 = zeros(n);
Enzyme.autodiff(Reverse, f2, Duplicated(copy(A), dA),
Duplicated(copy(b1), db1), Duplicated(copy(b2), db2))
@test dA ≈ dA2
@test db1 ≈ db12
@test db2 ≈ db22
#=
function f3(A, b1, b2; alg = KrylovJL_GMRES())
prob = LinearProblem(A, b1)
cache = init(prob, alg)
s1 = copy(solve!(cache).u)
cache.b = b2
s2 = solve!(cache).u
norm(s1 + s2)
end
Enzyme.autodiff(Reverse, f3, Duplicated(copy(A), dA), Duplicated(copy(b1), db1), Duplicated(copy(b2), db2))
@test dA ≈ dA2 atol=5e-5
@test db1 ≈ db12
@test db2 ≈ db22
=#
A = rand(n, n);
dA = zeros(n, n);
b1 = rand(n);
function fnice(A, b, alg)
prob = LinearProblem(A, b)
sol1 = solve(prob, alg)
return sum(sol1.u)
end
@testset for alg in (
LUFactorization(),
RFLUFactorization() # KrylovJL_GMRES(), fails
)
fb_closure = b -> fnice(A, b, alg)
fd_jac = FiniteDiff.finite_difference_jacobian(fb_closure, b1) |> vec
@show fd_jac
en_jac = map(onehot(b1)) do db1
return only(Enzyme.autodiff(set_runtime_activity(Forward), fnice,
Const(A), Duplicated(b1, db1), Const(alg)))
end |> collect
@show en_jac
@test en_jac≈fd_jac rtol=1e-4
fA_closure = A -> fnice(A, b1, alg)
fd_jac = FiniteDiff.finite_difference_jacobian(fA_closure, A) |> vec
@show fd_jac
en_jac = map(onehot(A)) do dA
return only(Enzyme.autodiff(set_runtime_activity(Forward), fnice,
Duplicated(A, dA), Const(b1), Const(alg)))
end |> collect
@show en_jac
@test en_jac≈fd_jac rtol=1e-4
end