-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy path_test_debug.py
70 lines (58 loc) · 1.68 KB
/
_test_debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
from gradient_free_optimizers import (
HillClimbingOptimizer,
StochasticHillClimbingOptimizer,
RepulsingHillClimbingOptimizer,
RandomSearchOptimizer,
RandomRestartHillClimbingOptimizer,
RandomAnnealingOptimizer,
SimulatedAnnealingOptimizer,
ParallelTemperingOptimizer,
ParticleSwarmOptimizer,
EvolutionStrategyOptimizer,
BayesianOptimizer,
TreeStructuredParzenEstimators,
ForestOptimizer,
EnsembleOptimizer,
)
# check if there are any debug-prints left in code
optimizer_list = [
HillClimbingOptimizer,
StochasticHillClimbingOptimizer,
RepulsingHillClimbingOptimizer,
RandomSearchOptimizer,
RandomRestartHillClimbingOptimizer,
RandomAnnealingOptimizer,
SimulatedAnnealingOptimizer,
ParallelTemperingOptimizer,
ParticleSwarmOptimizer,
EvolutionStrategyOptimizer,
BayesianOptimizer,
TreeStructuredParzenEstimators,
ForestOptimizer,
EnsembleOptimizer,
]
def objective_function(para):
score = -para["x1"] * para["x1"]
return score
search_space = {
"x1": np.arange(0, 5, 1),
}
for optimizer in optimizer_list:
opt0 = optimizer(search_space)
opt0.search(objective_function, n_iter=15, verbosity=False, memory=False)
opt1 = optimizer(search_space)
opt1.search(objective_function, n_iter=15, verbosity=False)
opt2 = optimizer(search_space)
opt2.search(
objective_function,
n_iter=15,
verbosity=False,
memory_warm_start=opt1.search_data,
)
opt3 = optimizer(search_space, initialize={"warm_start": [{"x1": 1}]})
opt3.search(
objective_function,
n_iter=15,
verbosity=False,
)