generated from ThalesGroup/template-project
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
97 lines (80 loc) · 2.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Authors:
# Helion du Mas des Bourboux <helion.dumasdesbourboux'at'thalesgroup.com>
# Thomas Courtat <thomas.courtat'at'thalesgroup.com>
#
# MIT License
#
# Copyright (c) 2022 THALES
# All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# 2022 November 25
import time
from tensorflow.keras.callbacks import Callback
from numpy.random import choice
class TimeHistory(Callback):
"""Keras callback tto monitor execution time during training"""
def on_train_begin(self, logs={}):
self.times = []
def on_epoch_begin(self, epoch, logs={}):
self.epoch_time_start = time.time()
def on_epoch_end(self, epoch, logs={}):
self.times.append(time.time() - self.epoch_time_start)
def split_dataset(
data,
labels,
p_train=0.8,
p_valid=0.0,
p_test=0.0,
):
"""Function to split and shuffle a dataset into train, validation and test
splits.
Arguments:
data (tensor): input dataset
labels (tensor): label vector associated to data
p_train (float): proportion of training data
p_valid (float): proportion of validation data
p_test (float): proportion of test data
"""
def aux(D_, L_, p_, idx_):
n_tot_examples_ = D_.shape[0]
n_taken_examples_ = int(n_tot_examples_ * p_)
chosen_idx_ = choice(idx_, size=n_taken_examples_, replace=False)
free_indexes_ = list(set(idx_) - set(chosen_idx_))
return D_[chosen_idx_], L_[chosen_idx_], chosen_idx_, free_indexes_
D = data
L = labels
idx = range(0, D.shape[0])
X_train, Y_train, train_idx, free_idx = aux(D, L, p_train, idx)
idx = free_idx
X_valid, Y_valid, valid_idx, free_idx = aux(D, L, p_valid, idx)
idx = free_idx
X_test, Y_test, test_idx, free_idx = aux(D, L, p_test, idx)
return (
X_train,
Y_train,
train_idx,
X_valid,
Y_valid,
valid_idx,
X_test,
Y_test,
test_idx,
)