-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperceptron.c
108 lines (90 loc) · 2.45 KB
/
perceptron.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
// Use self-made data(5 for training and 4 for testing) with 5 features and 2 labels(-1 or 1)
#define INPUT_VECTOR_LENGTH 5
#define INSTANCES_LENGTH 4
#define TEST_LENGTH 4
struct instance{
float input_vector[INPUT_VECTOR_LENGTH];
int label;
};
struct test{
float input_vector[INPUT_VECTOR_LENGTH];
int label;
};
void Perceptron(struct instance* instances,struct test* test, int epoch, float learning_rate)
{
int i = 0;
int j = 0;
int outcome;
float weight[INPUT_VECTOR_LENGTH] = {0}, bias = 0;
srand(time(NULL));
for(i = 0; i < INPUT_VECTOR_LENGTH; i++){
weight[i] = (rand() % 10)*0.1;
}
int count = 0, index = 0;
float prediction = 0;
// Start PCN train
while(count < epoch){
prediction = 0;
for (i = 0; i < INPUT_VECTOR_LENGTH; i ++)
prediction += instances[index].input_vector[i]*weight[i];
prediction += bias;
if(prediction * instances[index].label <= 0){
for (i = 0; i < INPUT_VECTOR_LENGTH; i ++)
weight[i] += learning_rate*instances[index].label*instances[index].input_vector[i];
bias += learning_rate*instances[index].label;
}
printf("%d weight: ", count);
for(i = 0; i < INPUT_VECTOR_LENGTH; i ++){
printf("%f ", weight[i]);
}
// Print the outcome of training(including the updated weights and the comparison of labels)
printf(" bias: %f", bias);
printf("instances: %d label: %d prediction: %f\n", index, instances[index].label, prediction);
count ++;
index ++;
if(index == INSTANCES_LENGTH)
index = 0;
}
// Start PCN test
for(j;j < TEST_LENGTH;j++){
prediction = 0;
for (i = 0; i < INPUT_VECTOR_LENGTH; i ++){
prediction += test[j].input_vector[i]*weight[i];
}
prediction += bias;
if (prediction<0)
outcome = -1;
else
outcome = 1;
// Print the outcome of testing(including real label and predicted label)
printf("test[%d] : label = %d ; prediction = %d\n",j,test[j].label,outcome);
}
}
int main()
{
int i;
float weight[INPUT_VECTOR_LENGTH] = {0}, bias = 0;
int epoch = 100;
float learning_rate = 0.01;
// Train dataset(5 features with 1 label)
struct instance instances[INSTANCES_LENGTH] =
{
{{1,1,1,1,1},1},
{{-1,-1,-1,-1,-1},-1},
{{1,-1,1,1,-1},1},
{{-1,1,-1,-1,1},-1}
};
// Test dataset
struct test test[INSTANCES_LENGTH] =
{
{{1,1,1,1,1},1},
{{-1,-1,-1,-1,-1},-1},
{{1,-1,1,1,-1},1},
{{-1,-1,-1,-1,-1},-1}
};
Perceptron(instances, test,epoch, learning_rate);
return 0;
}